FreeRtos内核源码分析(九)——协程

目录

一、协程简介

二、协程工作机制

2.1 协程控制块结构

2.2 协程管理方式

2.3 协程调度方式

2.4 协程通信机制

三、协程状态及状态切换

3.1 协程状态

3.2 状态切换

四、协程创建

五、协程调度分析

5.1 源码分析

5.2 逻辑图分析

六、协程通信

6.1 协程发送消息(线程)

6.2 协程接收消息(线程)

6.3 向协程发送消息(中断) 

6.4 接收协程消息(中断)


本章基于FreeRtos V9.0.0版本分析

一、协程简介

        FreeRtos中应用既可以使用任务,也可以使用协程(Co-Routine),或者两者混合使用。但是任务和协程使用不同的API函数,因此不能通过队列(信号量)将数据从任务发给协程,反之亦然。

       与任务相比,协程的调度在线程中,不支持抢占调度,只能使用协作式调度,实时精度低;由于没有中断参与,协程具有占用资源少、CPU利用率高的优点。协程与定时器有点类似。

注意:任务与协程混合使用时,协程的调度可以在某个任务中。

二、协程工作机制

2.1 协程控制块结构

        与任务相比较,协程控制块即可表示整个协程,不存在协程栈,也不存在上下文切换。

// 协程的回调函数(参数1:协程控制块句柄,参数2:协程ID uxIndex)
typedef void (*crCOROUTINE_CODE)( CoRoutineHandle_t, UBaseType_t );// 协程结构体
typedef struct corCoRoutineControlBlock
{crCOROUTINE_CODE 	pxCoRoutineFunction;    /*< 入口函数. */ListItem_t			xGenericListItem;	    /*< 协程状态条目,用于状态切换. */ListItem_t			xEventListItem;		    /*< 协程事项表项,用于信号等阻塞*/UBaseType_t 		uxPriority;			    /*< 优先级. */UBaseType_t 		uxIndex;			    /*< ID,当多个协程使用相同入口函数时,用于区分协同例程,为回调函数的第二个参数 */uint16_t 			uxState;			    /*< 协程状态. */
} CRCB_t; /* 协同程序控制块。Note的大小必须与TCB_t的uxPriority相同. */

2.2 协程管理方式

        协程的管理方式与任务管理类似,通过链表管理,链表定义如下:

/* 就绪和闭锁协程队列. --------------------*/
static List_t pxReadyCoRoutineLists[configMAX_CO_ROUTINE_PRIORITIES];	/*< 就绪链表. */
static List_t xDelayedCoRoutineList1;	/*< 阻塞链表1. */
static List_t xDelayedCoRoutineList2;	/*< 阻塞链表2. */
static List_t * pxDelayedCoRoutineList;	/*< 指向当前阻塞链表 */
static List_t * pxOverflowDelayedCoRoutineList;	/*< 指向溢出阻塞链表. */
static List_t xPendingReadyCoRoutineList;	    /*<  临时就绪链表,*/

        链表结构和操作方式可参考《基于STM32F103ZE平台分析FreeRtos(二)——任务部分》章节。

就绪链表:链接就绪协程,根据协程插入链表的先后顺序排列,新就绪协程插入到链表尾部。

阻塞链表:连接阻塞协程,采用双链表管理,阻塞协程根据阻塞时间片大小,按照从大到小的顺序插入链表,表头指向阻塞时间最近的协程。

双链表管理方式可参考《基于STM32F103ZE平台分析FreeRtos(二)——任务部分》章节。

临时就绪链表:中断中使用,当中断需要释放阻塞协程时,为避免数据冲突,不会直接操作就绪链表,会将释放的协程先插入到临时就绪链表。在协程调度中,由调度器将临时链表中的协程移到正式就绪链表中。

2.3 协程调度方式

        协程只有协作式调度,调度器在线程中循环进行,不存在上下文切换,一个协程执行完成后才能执行下一个协程,每次从协程的回调函数入口执行,每次循环执行一个协程的回调函数。

        调度的原则是选择优先级最高的协程执行,如果优先级最高的协程有多个,则轮询执行这几个协程。

2.4 协程通信机制

        协程支持从中断和线程中以FIFO方式操作消息队列,实现协程间的通信,操作过程与任务类似,但是不能与任务共用消息队列。

        当协程与任务混合使用时,协程调度基于某个任务存在,此时协程可以通过调用任务的通信接口与任务通信,其本质还是任务间的通信。

三、协程状态及状态切换

3.1 协程状态

1、绪( Ready:该协程在就绪链表(pxReadyCoRoutineLists[])或临时就绪链表(xPendingReadyCoRoutineList)中, 就绪的协程已经具备执行的能力,等待调度器调度。

2、行(Running:该协程在就绪列表中,但是正在调度中执行, 调度器选择运行的永远是处于最高优先级的就绪态协程。
3、塞(Blocked: 如果协程正在等待消息,就会从就绪链表移除,并根据阻塞时间插入到阻塞链表中。

3.2 状态切换

1、创建创建→就绪态:协程创建后,根据优先级将协程状态条目连接至就绪链表尾部,等待调度器进行调度。

2、就绪态→运行态:系统调度器启动后(在线程中启动),按照规则依次执行就绪状态的各个协程,当前执行的协程即是运行态;由于调度器在线程中执行,运行态协程不会被其他协程抢占。

3、运行态→就绪态:协程在调度中运行完成后,如果执行过程中没有阻塞,则执行完成切入就绪态,链表无变化。

4、运行态→阻塞态:正在运行的协程发生阻塞(收发消息等待)时,该协程会从就绪列表中移除,并根据阻塞时间片数,设置协程条目xItemValue值(xItemValue=调度入口时间片计数+阻塞时间片数),将该协程依据xItemValue大小插入到阻塞链表,协程由运行态变成阻塞态,然后执行完剩余所有代码后,才退出运行态。

5、阻塞态→就绪态:协程阻塞结束后(阻塞时间到或等待的信号被释放等),此协程会从阻塞链表移除,加入就绪链表,从而由阻塞态变成就绪态。

四、协程创建

        协程只提供动态创建接口xCoRoutineCreate:动态新建协程控制块,可以回收利用。

形参:

pxCoRoutineCode:协程回调函数,回调定义如下,函数有2个形参,形参1:协程控制块句柄;形参2:协程ID(即uxIndex)。

typedef void (*crCOROUTINE_CODE)( CoRoutineHandle_t, UBaseType_t );

uxPriority:协程优先级,数值越大,优先级越高。

uxIndex:协程ID,用于区分不同协程调用同一回调函数,为回调函数的第二个参数。

代码分析:

1. 动态创建协程控制块。
2. 第一个协程创建时,初始化管理链表。
3. 协程控制块根据形参初始化:回调函数、优先级、ID。
4. 初始化链表状态条目xGenericListItem和事项条目xEventListItem,其持有者指向协程控制块句柄。
5. 事件条目值xEventListItem->xItemValue设置为优先级(与控制块优先级相反,数值越小,优先级越高);
6. 协程状态条目xGenericListItem插入到就绪链表尾部,并更新最大优先级。

BaseType_t xCoRoutineCreate( 
crCOROUTINE_CODE pxCoRoutineCode, // 协程回调函数
UBaseType_t uxPriority,           // 协程优先级
UBaseType_t uxIndex )             // 协程ID,用于区分不同协程调用同一回调函数
{BaseType_t xReturn;CRCB_t *pxCoRoutine;//【1】 动态创建协程控制块pxCoRoutine = ( CRCB_t * ) pvPortMalloc( sizeof( CRCB_t ) );if( pxCoRoutine ){if( pxCurrentCoRoutine == NULL ){pxCurrentCoRoutine = pxCoRoutine;//【1.1】 第一个协程创建时,初始化管理链表prvInitialiseCoRoutineLists();}// 【2】优先级容错if( uxPriority >= configMAX_CO_ROUTINE_PRIORITIES ){uxPriority = configMAX_CO_ROUTINE_PRIORITIES - 1;}/* 【3】协程控制块初始化. */pxCoRoutine->uxState = corINITIAL_STATE;// 状态pxCoRoutine->uxPriority = uxPriority;   // 优先级pxCoRoutine->uxIndex = uxIndex;         // IDpxCoRoutine->pxCoRoutineFunction = pxCoRoutineCode;// 回调/*【4】初始化链表挂接条目. */vListInitialiseItem( &( pxCoRoutine->xGenericListItem ) );vListInitialiseItem( &( pxCoRoutine->xEventListItem ) );/*【5】更新条目持有者。*/listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xGenericListItem ), pxCoRoutine );listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xEventListItem ), pxCoRoutine );/*【6】事件条目设置为优先级。*/listSET_LIST_ITEM_VALUE( &( pxCoRoutine->xEventListItem ), ( ( TickType_t ) configMAX_CO_ROUTINE_PRIORITIES - ( TickType_t ) uxPriority ) );/*【7】插入到就绪链表,并更新最大优先级*/prvAddCoRoutineToReadyQueue( pxCoRoutine );xReturn = pdPASS;}else{xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;}return xReturn;
}

五、协程调度分析

5.1 源码分析

1.将临时就绪链表xPendingReadyCoRoutineList中的协程移至正式就绪链表pxReadyCoRoutineLists。

2.协程阻塞判断
(1)取全局时间片计数器xTickCount,并计算重入时间差。

(2)根据时间片遍历阻塞链表,对阻塞时间到的条目,从阻塞链表移除,添加到就绪链表。

(3)如果时间片有翻转现象,对阻塞链表进行切换。

(4)更新协程调度入口时间片xCoRoutineTickCount,协程阻塞时间基于该值计算。

3.调度执行
(1)选择最高优先级协程回调函数执行,如果最高优先级协程有多个,则轮询执行,每次循环执行一个协程的回调。

(2)回调函数形参为运行态协程控制块 pxCurrentCoRoutine和协程控制块识别码pxCurrentCoRoutine->uxIndex。

/*---------------------协程调度(通过循环调度)---------------------*/
void vCoRoutineSchedule( void )
{/*【1】临时就绪链表协程移到正式就绪链表*/prvCheckPendingReadyList();/*【2】阻塞态->就绪态切换,查看是否有阻塞的协同例程超时.*/prvCheckDelayedList();/*【3】检查最高优先级*/while(listLIST_IS_EMPTY(&(pxReadyCoRoutineLists[uxTopCoRoutineReadyPriority]))){if(uxTopCoRoutineReadyPriority==0){return;}--uxTopCoRoutineReadyPriority;}/*【4】遍历列表,因此具有相同优先级的协同例程获得相同的处理器时间份额*/listGET_OWNER_OF_NEXT_ENTRY( pxCurrentCoRoutine, &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) );/*【5】调用协程回调函数*/( pxCurrentCoRoutine->pxCoRoutineFunction )( pxCurrentCoRoutine, pxCurrentCoRoutine->uxIndex );return;
}
/*-----------------------------------------------------------*/

5.2 逻辑图分析

六、协程通信

        协程通信主要是消息队列的收发,与任务消息队列收发类似,可参考《基于STM32F103ZE平台分析FreeRtos(四)——消息队列》章节学习。

        协程通信接口只能用于协程间通信,不能与任务复用消息队列。

6.1 协程发送消息(线程)

  协程发送消息必须在协程中调用,调用过程不会与其他协程存在数据冲突。

1. 先进入临界区,协程不存在暂停调度的说法,直接闭锁中断,即进入无嵌套临界区。

2. 如果队列满,根据形参阻塞当前协程 ,阻塞时间片为调度器入口时间xCoRoutineTickCount 加阻塞形参xTicksToWaitxCoRoutineTickCount + xTicksToDelay)将当前协程从就绪链表移至阻塞链表,按照阻塞时间片从大到小顺序插入;同时协程事项条目插入到队列等待链表xTasksWaitingToSend;按照优先级从低到高顺序插入。

3. 退出临界区,退出临界区后,可能会有中断接收消息,但不可能有其他协程接收消息。

4. 再次进入临界区,

5. 如果队列未满, 将消息固定拷贝到消息队尾,并判断链表xTasksWaitingToReceive(接收协程阻塞链表)是否有协程阻塞,释放出被阻塞的最高优先级协程(【阻塞态】->【就绪态】)。

6. 退出临界区。

/*-------------协程发送消息(线程)------------------------------*/BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait )
{BaseType_t xReturn;Queue_t * const pxQueue = ( Queue_t * ) xQueue;// 【1】进入临界区portDISABLE_INTERRUPTS();{// 【2】队列已经满,协程阻塞if( prvIsQueueFull( pxQueue ) != pdFALSE ){// 【2.1.1】阻塞一段时间,协程从就绪链表移除,移入阻塞链表// 【2.2.2】阻塞时间为xCoRoutineTickCount + xTicksToWait,xCoRoutineTickCount 为调度入口时间if( xTicksToWait > ( TickType_t ) 0 ){vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );portENABLE_INTERRUPTS();return errQUEUE_BLOCKED;}// 【2.2】无阻塞,直接返回失败else{portENABLE_INTERRUPTS();return errQUEUE_FULL;}}}// 【3】退出临界区,不会有协程切换,但是中断可能会有消息发送,本协程继续执行!portENABLE_INTERRUPTS();// 【4】进入临界区portDISABLE_INTERRUPTS();{// 【4.1】队列有空闲if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ){//【4.1.2】压入消息prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );xReturn = pdPASS;/*【4.1.2】是否有等待数据的协程?有的话可以释放(阻塞态->就绪态) */if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive)) == pdFALSE){// 释放等待的协程if( xCoRoutineRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)) != pdFALSE ){xReturn = errQUEUE_YIELD;// 优先级高于当前协程}else{mtCOVERAGE_TEST_MARKER();}}else{mtCOVERAGE_TEST_MARKER();}}// 【4.2】队列满,返回失败else{xReturn = errQUEUE_FULL;}}portENABLE_INTERRUPTS();return xReturn;
}

6.2 协程接收消息(线程)

  协程接收消息必须在协程中调用,调用过程不会与其他协程存在数据冲突。

1. 进入临界区,协程不存在暂停调度的说法,直接闭锁中断,即进入无嵌套临界区。

2. 如队列没有消息,根据形参阻塞当前协程 ,阻塞时间片为调度器入口时间xCoRoutineTickCount 加阻塞形参xTicksToWaitxCoRoutineTickCount + xTicksToDelay)将当前协程从就绪链表移至阻塞链表,按照阻塞时间片从大到小顺序插入;同时协程事项条目插入到队列等待链表xTasksWaitingToReceive;按照优先级从低到高顺序插入。

3.退出临界区,退出临界区后,可能会有中断发送消息,但不可能有其他协程发送消息。

4.再次进入临界区,

5.如果队列有消息, 固定从队列按照FIFO方式读取消息,并判断链表xTasksWaitingToSend(发送协程阻塞链表)是否由阻塞协程,并释放出被阻塞的最高优先级协程(【阻塞态】->【就绪态】)。

6.退出临界区。

/*--------------------- 协程接收消息(线程)--------------------------------------*/
BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait )
{BaseType_t xReturn;Queue_t * const pxQueue = ( Queue_t * ) xQueue;//【1】进入临界区portDISABLE_INTERRUPTS();{// 【2.1】无消息,阻塞协程if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 ){//【2.1.1】 阻塞时间有效,if( xTicksToWait > ( TickType_t ) 0 ){vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );portENABLE_INTERRUPTS();return errQUEUE_BLOCKED;}//【2.1.2】 阻塞时间无效,返回失败else{portENABLE_INTERRUPTS();return errQUEUE_FULL;}}// 【2.2】 有消息,不阻塞else{mtCOVERAGE_TEST_MARKER();}}//【】portENABLE_INTERRUPTS();portDISABLE_INTERRUPTS();{// 有消息 读取新消息if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ){pxQueue->u.pcReadFrom += pxQueue->uxItemSize;if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ){pxQueue->u.pcReadFrom = pxQueue->pcHead;}else{mtCOVERAGE_TEST_MARKER();}--( pxQueue->uxMessagesWaiting );( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );xReturn = pdPASS;// 发送是否阻塞if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ){// 阻塞-就绪if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ){xReturn = errQUEUE_YIELD;}else{mtCOVERAGE_TEST_MARKER();}}else{mtCOVERAGE_TEST_MARKER();}}else{xReturn = pdFAIL;}}portENABLE_INTERRUPTS();return xReturn;
}

6.3 向协程发送消息(中断) 

1. 中断中操作消息先进入临界区(可嵌套)。

2. 如果队列满,退出发送

3. 如果队列未满, 将消息固定拷贝到消息队尾,并判断链表xTasksWaitingToReceive(接收协程阻塞链表)是否有阻塞的协程,并释放出被阻塞的最高优先级的协程(【阻塞态】->【就绪态】);此时释放的协程暂时插入临时就绪链表xPendingReadyCoRoutineList;由协程调度器统一处理。

4.退出临界区。

/*------------------向协程发送消息(中断)-----------------------------------------*/
BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken )
{Queue_t * const pxQueue = ( Queue_t * ) xQueue;if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ){prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );// 中断唤醒一个接收阻塞的协程if( xCoRoutinePreviouslyWoken == pdFALSE ){if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ){if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ){return pdTRUE;}else{mtCOVERAGE_TEST_MARKER();}}else{mtCOVERAGE_TEST_MARKER();}}else{mtCOVERAGE_TEST_MARKER();}}else{mtCOVERAGE_TEST_MARKER();}return xCoRoutinePreviouslyWoken;
}

6.4 接收协程消息(中断)

1.中断中操作消息先进入临界区(可嵌套)。

2.如果队列无消息,退出接收

3.如果队列有消息, 固定按照FIFO方式获取消息,并判断链表xTasksWaitingToSend(发送协程阻塞链表)是否有阻塞的协程,并释放出被阻塞的最高优先级的协程(【阻塞态】->【就绪态】);此时释放的协程暂时插入临时就绪链表xPendingReadyCoRoutineList;由线程中的调度器统一处理。

4.退出临界区。

/*--------------------接收协程消息(中断)--------------------------*/
BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxCoRoutineWoken )
{BaseType_t xReturn;Queue_t * const pxQueue = ( Queue_t * ) xQueue;/*我们无法阻止ISR,所以检查是否有可用的数据。如果没有,那就什么都不做就离开 */if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ){/* 从队列拷贝数据. */pxQueue->u.pcReadFrom += pxQueue->uxItemSize;if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ){pxQueue->u.pcReadFrom = pxQueue->pcHead;}else{mtCOVERAGE_TEST_MARKER();}--( pxQueue->uxMessagesWaiting );( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );// 唤醒一个发送协程if((*pxCoRoutineWoken)== pdFALSE ){// 移除事项if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ){// 恢复阻塞等待发送的协程,更新优先级if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ){*pxCoRoutineWoken = pdTRUE;}else{mtCOVERAGE_TEST_MARKER();}}else{mtCOVERAGE_TEST_MARKER();}}else{mtCOVERAGE_TEST_MARKER();}xReturn = pdPASS;}else{xReturn = pdFAIL;}return xReturn;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/10672.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通过acl设置阻止数据包通过

实验拓扑和信息如图&#xff08;配置信息参考上一章内容&#xff09; acl设置代码 AR4 系统是视图下 acl 2000 rule 5 deny source 10.10.10.1 0 接口0视图下 数据接收时 traffic-filter inbound acl 2000 测试结果

javatest

day4 2. public class test {public static void main(String[] args) {Scanner sc new Scanner(System.in);System.out.println("**************");System.out.println("存期 年利率");System.out.println("一年 2.25");System.ou…

Chromium编译指南2024 Windows11篇-编译前的准备工作和Visual Studio安装(一)

前言 在这个数字化快速发展的时代&#xff0c;浏览器不仅是我们获取信息的窗口&#xff0c;更是开发者表达创意和技术实力的舞台。 Chromium是由Google于2008年发起的开源浏览器项目&#xff0c;致力于为用户提供更快、更安全、更稳定的网页浏览体验。 其作为开源浏览器项目…

实验八 Linux虚拟内存 实验9.1:统计系统缺页次数成功案例

运行环境&#xff1a; VMware17.5.1 build-23298084Ubuntu 16.04LTS ubuntu版本下载地址Linux-4.16.10 linux历史版本下载地址虚拟机配置&#xff1a;硬盘一般不少于40G就行 内核版本不同内核文件代码也有出入&#xff0c;版本差异性令c文件要修改&#xff0c;如若要在linux6.7…

指针(5)加油吧

指针&#xff08;5&#xff09; 拿冒泡排序来举例&#xff1a; 1 .qsort void qsort (void* base,//base指向待排序数组的首元素的指针size_t num,//base指向数组中元素的个数size_t size,//base指向的数组中的一个元素的大小&#xff0c;单位是字节int(*cmp)(const void*,co…

HR人才测评,表达能力与岗位胜任力素质测评

什么是表达能力&#xff1f; 表达能力指的就是在语言能力基础之上发展形成的一种语用能力&#xff0c;可以结合自己所掌握的语言来实现交际的目的&#xff0c;能正确且灵活的把语言材料组合成为语言并且表达出想要表达的内容。 在百度百科中有如此定义&#xff0c;表达能力…

人工智能能否解决科学问题:Wolfram的视角

引言 在当今AI技术飞速发展的背景下&#xff0c;它在科学研究领域的应用正逐渐深入。从AlphaFold 3的推出到日益复杂的计算模型&#xff0c;AI似乎在向科学家的角色靠拢。然而&#xff0c;美国计算机科学家Stephen Wolfram在一系列讲座和文章中提出了反思&#xff1a;AI真的能…

如何给扫描好的3d模型贴图?---模大狮模型网

在数字化设计领域&#xff0c;3D模型的贴图是提升模型逼真度和视觉效果的重要步骤之一。尤其是对于扫描好的3D模型&#xff0c;通过添加适当的贴图&#xff0c;不仅可以增强模型的细节和真实感&#xff0c;还可以为设计带来更加生动的视觉体验。本文将为您详细介绍如何给扫描好…

算法详解——回溯法

一、回溯法概述——问题背景 回溯法是一种解决约束满足问题的方法&#xff0c;特别适用于解决组合问题、搜索优化问题等。它通过逐步构建候选解决方案并且在这个解决方案不再可能满足约束或条件时进行剪枝和回溯。具体来说&#xff0c;回溯法可以应用于以下类型的问题&#xff…

基于yolov5+gradio目标检测演示系统设计

YOLOv5与Gradio&#xff1a;目标检测可视化展示的新篇章 随着人工智能技术的深入发展&#xff0c;目标检测已成为现代智能应用中的一项关键技术。YOLOv5&#xff0c;作为目标检测领域的杰出代表&#xff0c;凭借其出色的实时性和准确性&#xff0c;赢得了广泛的认可和应用。而…

AI视频教程下载:用ChatGPT自动化各种工作任务

这是一门实用的无代码课程&#xff0c;旨在通过使用ChatGPT高级数据分析和代码解释器提高生产力。 通过让ChatGPT代码解释器创建程序来自动化单调的任务&#xff0c;提高您的计算机生产力。 这门课程专为那些渴望快速使用小型实用程序的人设计&#xff0c;不需要编程知识。相…

Java医院绩效管理应用系统源码java+ maven+ avue 公立医院绩效考核管理系统源码 支持二开

Java医院绩效管理应用系统源码java maven avue 公立医院绩效考核管理系统源码 支持二开 医院绩效管理系统解决方案紧扣新医改形势下医院绩效管理的要求&#xff0c;以“工作量为基础的考核方案”为核心思想&#xff0c;结合患者满意度、服务质量、技术难度、工作效率、医德医风…

如何使用 WavLM音频合成模型

微软亚洲研究院与 Azure 语音组的研究员们提出了通用语音预训练模型 WavLM。通过 Denoising Masked Speech Modeling 框架&#xff08;核心思想是通过预测被掩蔽&#xff08;即遮蔽或删除&#xff09;的语音部分来训练模型&#xff0c;同时还包括去噪的过程&#xff09;&#x…

使用单片机在图形点阵LCD上绘制波形图

使用单片机在图形点阵LCD上绘制波形图 需求&#xff1a; 假如有一组浮点数据&#xff0c;是通过AD转换得到的&#xff0c;保存在数组MyArray[]中&#xff0c;采集点数为len&#xff0c;采集周期为T&#xff0c;现在想用单片机在LCD上绘制出这组数据对应的波形图&#xff0c;该…

本地连接服务器Jupyter【简略版】

首先需要在你的服务器激活conda虚拟环境&#xff1a; 进入虚拟环境后使用conda install jupyter命令安装jupyter&#xff1a; 安装成功后先不要着急打开&#xff0c;因为需要设置密码&#xff0c;使用jupyter notebook password命令输入自己进入jupyter的密码&#xff1a; …

新能源汽车动力电池浸没式冷却方案介绍与未来趋势

前言 新能源汽车的兴起标志着汽车工业的一次革命&#xff0c;其中动力电池的设计与性能成为了关键。浸没式冷却方案作为一种新兴的技术&#xff0c;为动力电池系统提供了有效的散热解决方案&#xff0c;其在未来的发展趋势备受关注。 一 动力电池浸没式冷却方案介绍 首先&am…

用python写算法——栈笔记

栈 栈的定义相关算法题 栈的定义 1.它是一种运算受限的线性表。限定仅在表尾进行插入和删除操作的线性表。这一端被称为栈顶&#xff0c;相对地&#xff0c;把另一端称为栈底。向一个栈插入新元素又称作进栈、入栈或压栈&#xff0c;它是把新元素放到栈顶元素的上面&#xff0…

IIS配置SSL,根据pem和key生成pfx,openssl的版本不能太高

1、生成pfx文件 供应商给的文件是pef和key后缀的两个文件&#xff0c;在IIS里不好导入(如果有知道好导入的可以给我留言&#xff0c;谢谢。)。 1.1 下载OpenSSL工具&#xff0c;并安装。 主要用于将.pem文件转成.pfx文件。 下载OpenSSL的链接&#xff1a;http://slproweb.com/…

设计模式-结构型-适配器模式-Adapter

地址类 public class Address {public void street() {System.out.println("普通的街道");}public void zip() {System.out.println("普通的邮政编码");}public void city() {System.out.println("普通的城市");} } 荷兰地址类 public class …

飞书API(8):MySQL 入库定制版本

一、引入 通用版能解决百分之八九十的任务&#xff0c;剩下的部分任务需要进行定制。 先说明通用版本和定制版本有什么不同&#xff0c;通用版本就是只管大的数据类型&#xff0c;将数据处理为对应的类型入库&#xff0c;而定制版本会考虑局部列的数据类型&#xff0c;。举个…