【C/C++】深入理解指针(二)

文章目录

  • 深入理解指针(二)
    • 1.const修饰指针
      • 1.1 const修饰变量
      • 1.2 const修饰指针变量
    • 2.野指针
      • 2.1 野指针成因
        • 1.指针未初始化
        • 2. 指针越界访问
        • 3.指针指向的空间释放
      • 2.2 如何规避野指针
        • 2.2.1 指针初始化
        • 2.2.2 小心指针越界
        • 2.2.3 指针变量不再使⽤时,及时置NULL,指针使⽤之前检查有效性
      • 2.2.4 避免返回局部变量的地址
    • 3.assert断⾔
    • 4.指针的使用和传址调用
      • 4.1 strlen的模拟实现
      • 4.2 传值调⽤和传址调用

深入理解指针(二)

1.const修饰指针

1.1 const修饰变量

变量是可以修改的,如果把变量的地址交给⼀个指针变量,通过指针变量的也可以修改这个变量。 但是如果我们希望⼀个变量加上⼀些限制,不能被修改,怎么做呢?这就是const的作⽤。

#include <stdio.h>
int main()
{int m = 0;m = 20;//m是可以修改的 const int n = 0;n = 20;//n是不能被修改的 return 0;
}

上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就⾏修改,就不符合语法规则,就报错,致使没法直接修改n。

但是如果我们绕过n,使⽤n的地址,去修改n就能做到了,虽然这样做是在打破语法规则。

#include <stdio.h>
int main()
{const int n = 0;//n具备了常属性(不能被修改了),a在这还是变量,但在cpp中是常量printf("n = %d\n", n);int* p = &n;*p = 20;//*是解引用操作符(间接访问操作符)通过p存放的地址找到p指向的对象printf("n = %d\n", n);return 0;
}

输出结果:

在这里插入图片描述

我们可以看到这⾥⼀个确实修改了,但是我们还是要思考⼀下,为什么n要被const修饰呢?就是为了 不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让 p拿到n的地址也不能修改n,那接下来怎么做呢?

1.2 const修饰指针变量

⼀般来讲const修饰指针变量,可以放在的左边,也可以放在的右边,意义是不⼀样的。

nt * p;//没有const修饰? 
int const * p;//const 放在*的左边做修饰 
int * const p;//const 放在*的右边做修饰 

我们看下⾯代码,来分析具体分析⼀下:

#include <stdio.h>
//代码1 - 测试⽆const修饰的情况 
void test1()
{int n = 10;int m = 20;int* p = &n;*p = 20;//ok?yesp = &m; //ok?yes
}
//代码2 - 测试const放在*的左边情况 
void test2(){int n = 10;int m = 20;const int* p = &n;//限制指针指向内容,不能通过指针来修改*p = 20;//ok?nop = &m; //ok?yes
}
//代码3 - 测试const放在*的右边情况 
void test3()
{int n = 10;int m = 20;int * const p = &n;//此时限制指针变量p本身,原本放的是n的地址,不能改成m的地址//但是可以通过指针改变指针指向对象的内容 也就是n的值*p = 20; //ok?yesp = &m; //ok?no
}
//代码4 - 测试*的左右两边都有const 
void test4()
{int n = 10;int m = 20;int const * const p = &n;*p = 20; //ok?nop = &m; //ok?no
}
int main()
{//测试⽆const修饰的情况 test1();//测试const放在*的左边情况 test2();//测试const放在*的右边情况 test3();//测试*的左右两边都有const test4();return 0;
}

结论:const修饰指针变量的时候

• const如果放在的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本⾝的内容可变。

• const如果放在的右边,修饰的是指针变量本⾝,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。

2.野指针

概念:野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

2.1 野指针成因

1.指针未初始化
#include <stdio.h>
int main()
{ int *p;//局部变量指针未初始化,默认为随机值 *p = 20;return 0;
}
2. 指针越界访问
#include <stdio.h>
int main()
{int arr[10] = {0};int *p = &arr[0];int i = 0;for(i = 0; i <= 11; i++){//当指针指向的范围超出数组arr的范围时,p就是野指针 *(p++) = i;}return 0;
}
3.指针指向的空间释放
#include <stdio.h>
int* test()
{int n = 100;return &n;
}
int main()
{int*p = test();printf("%d\n", *p);//n的地址放进了p,但是空间已经释放,p非法访问return 0;
}

2.2 如何规避野指针

2.2.1 指针初始化

如果明确知道指针指向哪⾥就直接赋值地址,如果不知道指针应该指向哪⾥,可以给指针赋值NULL. NULL 是C语⾔中定义的⼀个标识符常量,值是0,0也是地址,这个地址是⽆法使⽤的,读写该地址 会报错。

#ifdef __cplusplus#define NULL 0#else#define NULL ((void *)0)#endif

初始化如下:

#include <stdio.h>
int main()
{int num = 10;int*p1 = &num;int*p2 = NULL;return 0;
}
2.2.2 小心指针越界

⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是 越界访问。

2.2.3 指针变量不再使⽤时,及时置NULL,指针使⽤之前检查有效性

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使⽤这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问, 同时使⽤指针之前可以判断指针是否为NULL。

我们可以把野指针想象成野狗,野狗放任不管是⾮常危险的,所以我们可以找⼀棵树把野狗拴起来, 就相对安全了,给指针变量及时赋值为NULL,其实就类似把野狗栓起来,就是把野指针暂时管理起 来。

不过野狗即使拴起来我们也要绕着⾛,不能去挑逗野狗,有点危险;对于指针也是,在使⽤之前,我们也要判断是否为NULL,看看是不是被拴起来的野狗,如果是不能直接使⽤,如果不是我们再去使⽤。

int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,10};int *p = &arr[0];int i = 0;for(i = 0; i < 10; i++){*(p++) = i;}//此时p已经越界了,可以把p置为NULL p = NULL;//下次使⽤的时候,判断p不为NULL的时候再使⽤ //...p = &arr[0];//重新让p获得地址 if(p != NULL) //判断 {//...}return 0;
}

2.2.4 避免返回局部变量的地址

如造成野指针的第3个例⼦,不要返回局部变量的地址。

3.assert断⾔

assert.h 头⽂件定义了宏 assert() ,⽤于在运⾏时确保程序符合指定条件,如果不符合,就报 错终⽌运⾏。这个宏常常被称为“断⾔”。

assert(p != NULL);

上⾯代码在程序运⾏到这⼀⾏语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序继续运⾏,否则就会终⽌运⾏,并且给出报错信息提⽰。

assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值⾮零), assert() 不会产⽣ 任何作⽤,程序继续运⾏。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误 流 stderr 中写⼊⼀条错误信息,显⽰没有通过的表达式,以及包含这个表达式的⽂件名和⾏号。

assert() 的使⽤对程序员是⾮常友好的,使⽤ assert() 有⼏个好处:它不仅能⾃动标识⽂件和 出问题的⾏号,还有⼀种⽆需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问 题,不需要再做断⾔,就在 #include 语句的前⾯,定义⼀个宏 NDEBUG 。

#define NDEBUG
#include <assert.h>

然后,重新编译程序,编译器就会禁⽤⽂件中所有的 assert() 语句。如果程序⼜出现问题,可以移 除这条 #define NDEBUG 指令(或者把它注释掉),再次编译,这样就重新启⽤了 assert() 语 句。

assert() 的缺点是,因为引⼊了额外的检查,增加了程序的运⾏时间。

⼀般我们可以在 Debug 中使⽤,在 Release 版本中选择禁⽤ assert 就⾏,在 VS 这样的集成开 发环境中,在 Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题, 在 Release 版本不影响⽤⼾使⽤时程序的效率。

4.指针的使用和传址调用

4.1 strlen的模拟实现

库函数strlen的功能是求字符串⻓度,统计的是字符串中 \0 之前的字符的个数。 函数原型如下:

size_t strlen ( const char * str );

参数str接收⼀个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回⻓度。 如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直 到 \0 就停⽌。 参考代码如下:

int my_strlen(const char * str)
{int count = 0;assert(str);//assert(str!=NULL)while(*str)// while(*str !='\0') char属于整型家族{count++;str++;}return count;
}
int main()
{int len = my_strlen("abcdef");printf("%d\n", len);return 0;
}

4.2 传值调⽤和传址调用

学习指针的⽬的是使⽤指针解决问题,那什么问题,⾮指针不可呢?

例如:写⼀个函数,交换两个整型变量的值⼀番思考后,我们可能写出这样的代码:

#include <stdio.h>
void Swap1(int x, int y)
{int tmp = x;x = y;y = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap1(a, b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

当我们运⾏代码,结果如下:

在这里插入图片描述

我们发现其实没产⽣交换的效果,这是为什么呢? 调试⼀下,试试呢?

在这里插入图片描述

我们发现在main函数内部,创建了a和b,a的地址是0x00cffdd0,b的地址是0x00cffdc4,在调⽤ Swap1函数时,将a和b传递给了Swap1函数,在Swap1函数内部创建了形参x和y接收a和b的值,但是 x的地址是0x00cffcec,y的地址是0x00cffcf0,x和y确实接收到了a和b的值,不过x的地址和a的地址不 ⼀样,y的地址和b的地址不⼀样,相当于x和y是独⽴的空间,那么在Swap1函数内部交换x和y的值, ⾃然不会影响a和b,当Swap1函数调⽤结束后回到main函数,a和b的没法交换。Swap1函数在使⽤ 的时候,是把变量本⾝直接传递给了函数,这种调⽤函数的⽅式我们之前在函数的时候就知道了,这 种叫传值调⽤

**结论:**实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实 参。 所以Swap1是失败的了。

那怎么办呢? 我们现在要解决的就是当调⽤Swap函数的时候,Swap函数内部操作的就是main函数中的a和b,直接 将a和b的值交换了。那么就可以使⽤指针了,在main函数中将a和b的地址传递给Swap函数,Swap 函数⾥边通过地址间接的操作main函数中的a和b,并达到交换的效果就好了。

#include <stdio.h>
void Swap2(int*px, int*py)
{int tmp = 0;tmp = *px;*px = *py;*py = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap2(&a, &b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

在这里插入图片描述

我们可以看到实现成Swap2的⽅式,顺利完成了任务,这⾥调⽤Swap2函数的时候是将变量的地址传 递给了函数,这种函数调⽤⽅式叫:传址调⽤。

*py;
*py = tmp;
}
int main()
{
int a = 0;
int b = 0;
scanf(“%d %d”, &a, &b);
printf(“交换前:a=%d b=%d\n”, a, b);
Swap2(&a, &b);
printf(“交换后:a=%d b=%d\n”, a, b);
return 0;
}


[外链图片转存中...(img-Eq2WLgKI-1744880216123)].assets\image-20250417165536566.png)我们可以看到实现成Swap2的⽅式,顺利完成了任务,这⾥调⽤Swap2函数的时候是将变量的地址传 递给了函数,这种函数调⽤⽅式叫:**传址调⽤。**传址调⽤,可以让函数和主调函数之间建⽴真正的联系,在函数内部可以修改主调函数中的变量;所 以未来函数中只是需要主调函数中的变量值来实现计算,就可以采⽤传值调⽤。如果函数内部要修改 主调函数中的变量的值,就需要传址调⽤。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/77311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【verilog】在同一个 always 块中写了多个“看起来独立”的 if / if-else,到底谁先谁后,怎么执行?会不会冲突?

&#x1f50d; 问题本质 在一个 always (posedge clk) 块中&#xff0c;所有的代码都是顺序执行的。但这不意味着它就像软件一样“一条一条执行”&#xff0c;因为最终是电路&#xff01;电路是并行存在的&#xff01; Verilog 是硬件描述语言&#xff08;HDL&#xff09;&am…

【React】什么是 Hook

useStateuseEffectuseRef 什么是hook&#xff1f;16.8版本出现的新特性。可以在不编写class组件的情况下使用state以及其它的React特性 为什么有hook&#xff1f;class组件很难提取公共的重用的代码&#xff0c;然后反复使用&#xff1b;不编写类组件也可以使用类组件的状态st…

如何查看自己抖音的IP属地?详细教程及如何修改

在当今互联网时代&#xff0c;IP属地信息已成为各大社交平台&#xff08;如抖音、微博、快手等&#xff09;展示用户真实网络位置的重要功能。以下是关于如何查看抖音IP属地的详细教程及常见问题解答&#xff0c;帮助您快速了解相关信息&#xff1a; 一、如何查看抖音账号的IP属…

深度学习算力革新:AI服务器在运维工作中的智能化实践

【导语】作为IT基础设施服务领域的从业者&#xff0c;我们在日常工作中发现&#xff0c;AI服务器的智能化运维能力正在重塑传统IDC的管理模式。本文将以DeepSeek系列服务器为例&#xff0c;分享智能算力设备在真实运维场景中的创新应用。 一、传统服务器集群的运维痛点 在数据…

安装部署RabbitMQ

一、RabbitMQ安装部署 1、下载epel源 2、安装RabbitMQ 3、启动RabbitMQ web管理界面 启用插件 rabbitmq数据目录 创建rabbitmq用户 设置为管理员角色 给用户赋予权限 4、访问rabbitmq

中间件--ClickHouse-4--向量化执行(什么是向量?为什么向量化执行的更快?)

1、向量&#xff08;Vector&#xff09;的概念 &#xff08;1&#xff09;、向量的定义 向量&#xff1a;在计算机科学中&#xff0c;向量是一组同类型数据的有序集合&#xff0c;例如一个包含多个数值的数组。在数据库中&#xff0c;向量通常指批量数据&#xff08;如一列数…

Python PDF 转 Markdown 工具库对比与推荐

根据最新评测及开源社区实践&#xff0c;以下为综合性能与适用场景的推荐方案&#xff1a; 1. ‌Marker‌ ‌特点‌&#xff1a; 转换速度快&#xff0c;支持表格、公式&#xff08;转为 LaTeX&#xff09;、图片提取&#xff0c;适配复杂排版文档‌。依赖 PyTorch&#xff0c…

Vue 和 Spring boot 和 Bean 不同生命周期

一、Vue 组件生命周期 父子组件生命周期顺序&#xff1a; 创建时&#xff1a; 父 beforeCreate → 父 created → 父 beforeMount → 子组件生命周期 → 父 mounted 更新时&#xff1a; 父 beforeUpdate → 子组件更新 → 父 updated。 销毁时&#xff1a; 父 beforeDestroy…

Microsoft Azure 基础知识简介

Microsoft Azure 基础知识简介 已完成100 XP 2 分钟 Microsoft Azure 是一个云计算平台&#xff0c;提供一系列不断扩展的服务&#xff0c;可帮助你构建解决方案来满足业务目标。 Azure 服务支持从简单到复杂的一切内容。 Azure 具有简单的 Web 服务&#xff0c;用于在云中托…

C语言链接数据库

目录 使用 yum 配置 mysqld 环境 查看 mysqld 服务的版本 创建 mysql 句柄 链接数据库 使用数据库 增加数据 修改数据 查询数据 获取查询结果的行数 获取查询结果的列数 获取查询结果的列名 获取查询结果所有数据 断开链接 C语言访问mysql数据库整体源码 通过…

【Maven】手动安装依赖到本地仓库

【Maven】手动安装依赖到本地仓库 【一】下载依赖【二】安装 JAR 文件到本地仓库【三】验证安装【四】在项目中使用该依赖【1】注意事项【2】额外提示 【一】下载依赖 登录到中央仓库下载依赖&#xff0c;中央仓库地址&#xff1a;https://mvnrepository.com/ 搜搜你的依赖的a…

腾讯云golang一面

go垃圾回收机制 参考自&#xff1a;https://zhuanlan.zhihu.com/p/334999060 go 1.3 标记清除法 缺点 go 1.5 三色标记法 屏障机制 插入屏障 但是如果栈不添加,当全部三色标记扫描之后,栈上有可能依然存在白色对象被引用的情况(如上图的对象9). 所以要对栈重新进行三色标记扫…

跨平台嵌入式音视频开发指南:EasyRTC音视频通话的多场景适配与AI扩展能力

在数字化通信技术飞速发展的今天&#xff0c;实时音视频通信已成为众多智能设备和应用的核心功能。从智能家居到远程办公&#xff0c;从在线教育到智能安防&#xff0c;音视频通信技术的应用场景不断拓展&#xff0c;对低延迟、高稳定性和跨平台兼容性的需求也在持续增长。在这…

Android 11 去掉性能受到影响通知

源码位置: frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java final void finishBooting() {TimingsTraceAndSlog t = new TimingsTraceAndSlog(TAG + "Timing",Trace.TRACE_TAG_ACTIVITY_MANAGER);t.traceBegin("Finis…

Mac idea WordExcel等文件git modify 一直提示修改状态

CRLF LF CR 换行符自动转换问题 查看状态&#xff1a;git config --global --list Mac需要开启&#xff0c;window下需要关闭 关闭命令&#xff1a;git config --global core.autocrlf false 命令解释&#xff1a; autocrlf true 表示要求git在提交时将crlf转换为lf&a…

Apache Commons CLI 入门教程:轻松解析命令行参数

文章目录 Apache Commons CLI 入门教程&#xff1a;轻松解析命令行参数一、什么是 Commons CLI&#xff1f;二、为什么选择 Commons CLI&#xff1f;三、快速开始1. 添加依赖2. 基础示例3. 运行示例1. 在Idea中运行2. 命令行中运行3. 使用 Maven/Gradle 运行&#xff08;推荐&a…

VS2022调试嵌入式linux C# 程序 高效的开发方案

1.目标板子配置好ssh,确保PC可以连上 2.目标板子上传VSDBG程序&#xff0c;详见我的上一个文章 3.PC安装winfsp&#xff0c; sshfs,SSHFS-Win Manager.傻瓜式安装&#xff0c;将目标板子映射到PC的某个盘 4.VS2022中&#xff0c;你的工程的exe生成目录到上面盘中某个路径 5…

Python中如何加密/解密敏感信息(如用户密码、token)

敏感信息,如用户密码、API密钥、访问令牌(token)、信用卡号以及其他个人身份信息(PII),构成了现代应用程序和系统中最为关键的部分。这些信息一旦被未经授权的第三方获取,可能引发灾难性的后果,从个人隐私泄露到企业经济损失,甚至是大规模的社会安全问题。保护这些敏感…

智能体开发的范式革命:Cangjie Magic全景解读与实践思考

引言&#xff1a;当智能体开发遇见仓颉魔法 在人工智能技术日新月异的今天&#xff0c;智能体(Agent)开发正从实验室走向产业应用的核心舞台。2025年3月&#xff0c;仓颉社区推出的Cangjie Magic开源平台&#xff0c;以其创新的设计理念和技术架构&#xff0c;为这一领域带来了…

【Java学习笔记】位运算

位运算 一、原码&#xff0c;反码&#xff0c;补码 (1) 二进制的最高位是符号位&#xff1a;0 表示正数&#xff0c;1 表示负数&#xff08;怎么记&#xff1f; 1旋转一下变成-&#xff09; (2) 正数的原码、反码、补码都一样&#xff08;三码合一&#xff09; (3) 负数的反码…