【C语言】多进程/多线程

【C语言】多进程/多线程

  • 参考链接
  • 多进程/多线程服务器
    • 1. 多进程服务器
    • 2. 多线程服务器
  • 结语
  • 参考链接

在这里插入图片描述

参考链接

c 中文网
菜鸟 c

多进程/多线程服务器

  多进程和多线程是常用的并发编程技术。它们都允许程序同时执行多个任务,提高了系统的资源利用率和程序的运行效率。

1. 多进程服务器

  多进程是指在操作系统中同时运行多个独立的进程。每个进程都有自己独立的地址空间和资源,进程间的通信通过操作系统提供的进程间通信机制进行。多进程可以充分利用多核处理器的优势,提高系统的整体性能。然而,进程间的切换会引入较大的开销,并且需要较高的内存开销。

  服务器使用 fork 创建子进程来和客户端进行通信,父进程负责取出连接请求。

#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <strings.h>
#include <string.h>
#include <ctype.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <arpa/inet.h>// 信号处理函数
void waitchild(int signo)
{pid_t wpid;while (1){wpid = waitpid(-1, NULL, WNOHANG);if (wpid > 0){printf("child exit, wpid==[%d]\n", wpid);}else if (wpid == 0 || wpid == -1){break;}}
}int main()
{// 阻塞SIGCHLD信号sigset_t mask;sigemptyset(&mask);sigaddset(&mask, SIGCHLD);sigprocmask(SIG_BLOCK, &mask, NULL);int sigbol = 1;int sfd = socket(AF_INET, SOCK_STREAM, 0);// 设置端口复用int opt = 1;setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(int));struct sockaddr_in soaddr;bzero(&soaddr, sizeof(soaddr));soaddr.sin_family = AF_INET;soaddr.sin_port = htons(9999);soaddr.sin_addr.s_addr = htonl(INADDR_ANY);bind(sfd, (struct sockaddr *)&soaddr, sizeof(soaddr));//监听-listenlisten(sfd, 128);struct sockaddr_in clientsocket;socklen_t clilen;char sIP[16];while (1){clilen = sizeof(clientsocket);bzero(&clientsocket, clilen);int cfd = accept(sfd, (struct sockaddr *)&clientsocket, &clilen);/* */int pid = fork();if (pid == 0){// 子进程close(sfd);char buff[64];printf("current pid is [%d],father is [%d]\n", getpid(), getppid());while (1){memset(buff, 0x00, sizeof(buff));int n = read(cfd, buff, sizeof(buff));if (n == 0){return 0;}else if (n < 0){perror("child read error");return -1;}printf("child [%d] recv data from [%s:%d]:[%s]\n", getpid(), inet_ntop(AF_INET, &clientsocket.sin_addr.s_addr, sIP, sizeof(sIP)), ntohs(clientsocket.sin_port), buff);for (int i = 0; i < n; i++){buff[i] = toupper(buff[i]);}n = Write(cfd, buff, n);if (n <= 0){perror("child write error");return -1;}}}else if (pid > 0){// 父进程close(cfd);//假如是初次fork子进程,那么才注册信号处理函数if (sigbol == 1){sigbol = 0;// 注册SIGCHLD信号处理函数struct sigaction act;act.sa_handler = waitchild;act.sa_flags = 0;sigemptyset(&act.sa_mask);sigaction(SIGCHLD, &act, NULL);// 解除对SIGCHLD信号的阻塞sigprocmask(SIG_UNBLOCK, &mask, NULL);}//循环等待下一个连接请求的到来continue;}else{perror("fork error");close(sfd);return -1;}}return 0;
}

2. 多线程服务器

  多线程是指在同一个进程中同时运行多个独立的线程。与进程不同,线程共享同一个地址空间和资源,可以通过共享内存等方式进行线程间的通信。多线程可以减少线程间的切换开销和内存开销,提高系统的响应速度和资源利用率。然而,多线程编程需要考虑线程安全问题,需要使用线程同步技术来保证共享资源的正确访问。

  主线程创建子线程,用子进程和客户端通信。

#include <arpa/inet.h>
#include <pthread.h>
#include <strings.h>
#include <string.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <unistd.h>typedef struct info
{int cfd; // 若为-1表示可用, 大于0表示已被占用int idx;pthread_t thread;          // 由pthread_create 返回struct sockaddr_in client; // 由accept 返回
} INFO;INFO thInfo[1024];void initThreadArr()
{for (int i = 0; i < 1024; i++){bzero(&thInfo[i],sizeof(thInfo[i]));thInfo[i].cfd = -1;}
}int findIndex()
{int i;for (i = 0; i < 1024; i++){if (thInfo[i].cfd == -1){return i;}}//if (i == 1024)//{//    return -1;//}return -1;
}void *threadFunc(void *arg)
{INFO *curthread = (INFO *)arg;char sIP[16];printf("current thread id [%ld],arr index is [%d],cfd is [%d],client ip is [%s:%d]\n", pthread_self(), curthread->idx, curthread->cfd, inet_ntop(AF_INET, &curthread->client.sin_addr.s_addr, sIP, sizeof(sIP)), ntohs(curthread->client.sin_port));char buff[64];while (1){memset(buff, 0x00, sizeof(buff));int n = read(curthread->cfd, buff, sizeof(buff));if (n == 0){bzero(&thInfo[curthread->idx],sizeof(thInfo[curthread->idx]));thInfo[thInfo->idx].cfd = -1;return 0;}else if (n < 0){bzero(&thInfo[curthread->idx],sizeof(thInfo[curthread->idx]));thInfo[thInfo->idx].cfd = -1;perror("child read error");return 0;}printf("child thread [%ld] recv data from [%s:%d]:[%s]\n", pthread_self(), inet_ntop(AF_INET, &curthread->client.sin_addr.s_addr, sIP, sizeof(sIP)), ntohs(curthread->client.sin_port), buff);for (int i = 0; i < n; i++){buff[i] = toupper(buff[i]);}n = write(curthread->cfd, buff, n);if (n <= 0){bzero(&thInfo[curthread->idx],sizeof(thInfo[curthread->idx]));thInfo[thInfo->idx].cfd = -1;perror("child write error");return 0;}}
}int main()
{initThreadArr();int sfd = socket(AF_INET, SOCK_STREAM, 0);// 设置端口复用int opt = 1;setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(int));struct sockaddr_in soaddr;bzero(&soaddr, sizeof(soaddr));soaddr.sin_family = AF_INET;soaddr.sin_port = htons(9999);soaddr.sin_addr.s_addr = htonl(INADDR_ANY);bind(sfd, (struct sockaddr *)&soaddr, sizeof(soaddr));// 监听-listenlisten(sfd, 128);struct sockaddr_in clientsocket;socklen_t clilen;int cfd;int index;int ret;while (1){index = -1;clilen = sizeof(clientsocket);bzero(&clientsocket, clilen);cfd = accept(sfd, (struct sockaddr *)&clientsocket, &clilen);// 从线程数组中找一个可以用的index = findIndex();thInfo[index].idx = index;thInfo[index].client = clientsocket;thInfo[index].cfd = cfd;// 创建线程ret = pthread_create(&thInfo[index].thread, NULL, threadFunc, &thInfo[index]);if (ret != 0){printf("create thread error:[%s]\n", strerror(ret));exit(-1);}// 设置子线程为分离属性pthread_detach(thInfo[index].thread);}Close(sfd);return 0;
}

结语

  多进程和多线程的选择取决于具体的应用场景。如果任务之间需要较高的隔离度,或者需要充分利用多核处理器的优势,可以选择多进程。如果任务之间需要较低的切换开销和内存开销,或者需要提高系统的响应速度和资源利用率,可以选择多线程。

参考链接

c 中文网
菜鸟 c

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/74426.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql 磐维(opengauss)tidb误删数据之高级恢复

Mysql参考&#xff1a; Mysql 8.0 XtraBackupMysqlbinlog 完全恢复 - 墨天轮 Mysql 8.0 XtraBackupMysqlbinlog 完全恢复[TOC]# 一、安装mysql 8.0.19## 1.1https://www.modb.pro/db/509223MySQL 的全量备份、增量备份与 Binlog 时间点恢复_mysqlbinlog自动备份吗-CSDN博客文章…

3. 轴指令(omron 机器自动化控制器)——>MC_SetPosition

机器自动化控制器——第三章 轴指令 11 MC_SetPosition变量▶输入变量▶输出变量▶输入输出变量 功能说明▶时序图▶重启动运动指令▶多重启运动指令▶异常 MC_SetPosition 将轴的指令当前位置和反馈当前位置变更为任意值。 指令名称FB/FUN图形表现ST表现MC_SetPosition当前位…

从 @SpringBootApplication 出发,深度剖析 Spring Boot 自动装配原理

在 Spring Boot 的开发旅程中&#xff0c;SpringBootApplication 注解堪称开启便捷开发之门的钥匙。它不仅是一个简单的注解&#xff0c;更是理解 Spring Boot 自动装配原理的重要入口。接下来&#xff0c;我们将以SpringBootApplication 为切入点&#xff0c;深入探究 Spring …

MySQL面试专题

1.什么是BufferPool&#xff1f; Buffer Pool基本概念 Buffer Pool&#xff1a;缓冲池&#xff0c;简称BP。其作用是用来缓存表数据与索引数据&#xff0c;减少磁盘IO操作&#xff0c;提升效率。 Buffer Pool由缓存数据页(Page) 和 对缓存数据页进行描述的控制块 组成, 控制…

调用百度api实现语音识别(python)

该代码实现了一个企业级的语音识别解决方案,通过调用百度语音识别API,实现实时录音识别和对已有音频语音识别功能。 百度智能云:请自行访问百度智能云,开通免费的语音识别功能,获取API_KEY和SECRET_KEY。操作按照百度流程即可,可免费申请。 首先,配置下百度API和描述下错…

KRaft模式

目录标题 Kraft模式**1. 什么是Kraft模式&#xff1f;****2. 为什么引入Kraft模式&#xff1f;****3. 核心优势****4. 架构与工作原理****5. 部署与配置要点****6. 适用场景与最佳实践****总结**KIP-833: Mark KRaft as Production Ready除了Kraft模式&#xff0c;Kafka还有以下…

单片机电路中常见的英文术语及缩写

以下是单片机电路中常见的英文术语及缩写的解释及其作用说明&#xff0c;按功能分类整理&#xff0c;便于理解&#xff1a; 一、核心术语 MCU (Microcontroller Unit) • 中文&#xff1a;微控制器单元 • 作用&#xff1a;单片机的核心芯片&#xff0c;集成CPU、存储器、外设接…

常见框架漏洞之一:Thinkphp5x

ThinkPHP是为了简化企业级应⽤开发和敏捷WEB应⽤开发⽽诞⽣的&#xff0c;是⼀个快速、兼容⽽且简单的轻量级国产PHP开发框架&#xff0c;诞⽣于2006年初&#xff0c;原名FCS&#xff0c;2007年元旦正式更名为 ThinkPHP&#xff0c;遵循Apache2开源协议发布&#xff0c;从Stru…

2025年优化算法:龙卷风优化算法(Tornado optimizer with Coriolis force,TOC)

龙卷风优化算法&#xff08;Tornado optimizer with Coriolis force&#xff09;是发表在中科院二区期刊“ARTIFICIAL INTELLIGENCE REVIEW”&#xff08;IF&#xff1a;11.7&#xff09;的2025年智能优化算法 01.引言 当自然界的狂暴之力&#xff0c;化身数字世界的智慧引擎&…

面试中如何回答性能优化的问题

性能问题和Bug不同,后者的分析和解决思路更清晰,很多时候从应用日志(文中的应用指分布式服务下的单个节点)即可直接找到问题根源,而性能问题,其排查思路更为复杂一些。 对应用进行性能优化,是一个系统性的工程,对工程师的技术广度和技术深度都有所要求。一个简单的应用…

CMake 函数和宏

CMake 函数 CMake 函数定义语法如下, 其中 name 为函数名, <arg1> 为参数名, <commands> 为函数体. 函数定义后, 可以通过 name 调用函数. 函数名允许字母数字下划线, 不区分大小写. function(name [<arg1> ...])<commands> endfunction()如下的样例…

【QA】Qt有哪些迭代器模式的应用?

在 Qt/C 中&#xff0c;迭代器模式的设计主要分为 标准 C 风格 和 Qt 框架特有风格&#xff0c;以下结合代码详细说明两种实现方式的关键设计及其应用场景&#xff1a; 一、Qt 框架中的迭代器模式设计 Qt 提供了两种迭代器风格&#xff1a;Java 风格&#xff08;显式迭代器&am…

Mysql表的简单操作

&#x1f3dd;️专栏&#xff1a;Mysql_猫咪-9527的博客-CSDN博客 &#x1f305;主页&#xff1a;猫咪-9527-CSDN博客 “欲穷千里目&#xff0c;更上一层楼。会当凌绝顶&#xff0c;一览众山小。” 目录 3.1 创建表 3.2 查看表结构 3.3 修改表 1. 添加字段 2. 修改字段 3…

【云馨AI-大模型】自动化部署Dify 1.1.2,无需科学上网,Linux环境轻松实现,附Docker离线安装等

Dify介绍 官网&#xff1a;https://dify.ai/zh生成式 AI 应用创新引擎开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力&#xff0c;轻松构建和运营生成式 AI 原生应用。 Dify安装脚本 目录创建 mkdir -p /data/yunxinai &&a…

WordPress上传图片时显示“未提供数据”错误

在WordPress中上传图片时显示“未提供数据”的错误&#xff0c;通常是由多种原因引起的&#xff0c;以下是一些常见的问题及其解决方法&#xff1a; 1. 文件权限问题 WordPress需要正确的文件和目录权限才能正常上传图片。如果权限设置不正确&#xff0c;可能会导致无法上传图…

python3面试题20个(python web篇)

更多内容请见: python3案例和总结-专栏介绍和目录 文章目录 1.python asyncio的原理?2.对Flask蓝图(Blueprint)的理解?3.Flask 和 Django 路由映射的区别?4.什么是wsgi,uwsgi,uWSGI?5.Django、Flask、Tornado的对比?6.CORS 和 CSRF的区别?7.Session,Cookie,JWT的理解8.简…

RedisTemplate和RedissonClient适用的场景有什么不同

在 Spring Boot 项目中&#xff0c;RedisTemplate 和 RedissonClient 分别针对不同的使用场景设计&#xff0c;以下是它们的核心区别和适用场景分析&#xff1a; 一、RedisTemplate&#xff08;Spring Data Redis&#xff09; 定位 Spring 官方提供的 Redis 操作工具&#xf…

人脸表情识别系统分享(基于深度学习+OpenCV+PyQt5)

最近终于把毕业大论文忙完了&#xff0c;众所周知硕士大论文需要有三个工作点&#xff0c;表情识别领域的第三个工作点一般是做一个表情识别系统出来&#xff0c;如下图所示。 这里分享一下这个表情识别系统&#xff1a; 采用 深度学习OpenCVPyQt5 构建&#xff0c;主要功能包…

GitHub供应链攻击事件:Coinbase遭袭,218个仓库暴露,CI/CD密钥泄露

此次供应链攻击涉及GitHub Action "tj-actions/changed-files"&#xff0c;最初是针对Coinbase的一个开源项目的高度定向攻击&#xff0c;随后演变为范围更广的威胁。 攻击过程与影响 Palo Alto Networks Unit 42在一份报告中指出&#xff1a;“攻击载荷主要针对其…

Redis 核心源码解析:从设计哲学到企业级应用实践

一、Redis 的核心设计哲学 Redis 的成功源于其 「用内存换时间」 的核心理念&#xff0c;围绕以下三个核心原则构建&#xff1a; 极简主义&#xff1a;单线程模型避免锁竞争&#xff0c;代码保持高度内聚。 性能至上&#xff1a;所有数据常驻内存&#xff0c;网络层采用事件驱…