STM32---FreeRTOS消息队列

一、简介

1、队列简介:

队列:是任务到任务,任务到中断、中断到任务数据交流的一种机制(消息传递)。

 FreeRTOS基于队列,实现了多种功能,其中包括队列集、互斥信号量、计数型信号量、二值信号量、递归互斥信号量,因此很有必要深入了解FreeRTOS的队列。

(中断一关闭,就不会出现任务切换,以防多个任务同时操作队列) 

2、FreeRTOS队列特点:

                        1.数据入队出队方式:先进先出

                        2.数据传递方式:实际值

                        3.多任务访问

                        4. 出队、入队堵塞

问题:当多个任务写入消息给一个“满队列”时,这些任务都会进入阻塞状态,也就是说有多个任务      在等待同一 个队列的空间。那当队列中有空间时,哪个任务会进入就绪态? 

答:     1、优先级最高的任务     2、如果大家的优先级相同,那等待时间最久的任务会进入就绪态 

注:我始终认为自己不是一个很聪明的人,所以这些理论知识,我都是浅尝辄止,量力而行。

3、往队列写入消息API函数 :

4、从队列读取消息API函数: 

 二、实验

1、实验步骤

2、代码: 

main.c

#include "stm32f10x.h"
#include "FreeRTOS.h"
#include "task.h"
#include "freertos_demo.h"
#include "Delay.h"
#include "sys.h"
#include "usart.h"
#include "LED.h"
#include "Key.h"int main(void){	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);//设置系统中断优先级分组 4 uart_init(115200);	 delay_init();Key_Init();LED_Init();// 创建任务FrrrRTOS_Demo();}

freertos_demo.c 

#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "LED.h"
#include "Key.h"
#include "usart.h"
#include "delay.h"/******************************************************************任务配置****************************************************/
//任务优先级
#define START_TASK_PRIO					1
//任务堆栈大小	
#define START_TASK_STACK_SIZE 	128  
//任务句柄
TaskHandle_t StartTask_Handler;
//任务函数
void start_task(void *pvParameters);//任务优先级
#define TASK1_PRIO							2
//任务堆栈大小	
#define TASK1_STACK_SIZE 				128  
//任务句柄
TaskHandle_t Task1_Handler;
//任务函数
void task1(void *pvParameters);//任务优先级
#define TASK2_PRIO							3
//任务堆栈大小	
#define TASK2_STACK_SIZE 				128  
//任务句柄
TaskHandle_t Task2_Handler;
//任务函数
void task2(void *pvParameters);//任务优先级
#define TASK3_PRIO							4
//任务堆栈大小	
#define TASK3_STACK_SIZE 				128  
//任务句柄
TaskHandle_t Task3_Handler;
//任务函数
void task3(void *pvParameters);char  task_buffer[500]; 							//用于存储系统中任务信息表格/******************************************************************任务函数****************************************************/
QueueHandle_t		key_queue; 						//小数据句柄
QueueHandle_t		big_data_queue; 			//大数据	句柄
char buff[100] = {"苍天已死,黄天当立;岁在甲子,天下大吉"};
void FrrrRTOS_Demo(void)
{key_queue = xQueueCreate(2, sizeof(uint8_t));if(key_queue != NULL){printf("\r\nkey_queue队列创建成功!!!\r\n");}else{ printf("key_queue队列创建失败!!!\r\n");	}big_data_queue = xQueueCreate(1, sizeof(char *));if(big_data_queue != NULL){printf("big_data_queue队列创建成功!!!\r\n");}else{ printf("big_data_queue队列创建失败!!!\r\n");	}//创建开始任务xTaskCreate((TaskFunction_t )start_task,            			//任务函数( char*         )"start_task",          			//任务名称(uint16_t       )START_TASK_STACK_SIZE, 			//任务堆栈大小(void*          )NULL,                  			//传递给任务函数的参数(UBaseType_t    )START_TASK_PRIO,       			//任务优先级(TaskHandle_t*  )&StartTask_Handler);   			//任务句柄 // 启动任务调度vTaskStartScheduler();}void start_task(void *pvParameters)
{taskENTER_CRITICAL();           //进入临界区//创建1任务xTaskCreate((TaskFunction_t )task1,     	(const char*    )"task1",   	(uint16_t       )TASK1_STACK_SIZE, (void*          )NULL,				(UBaseType_t    )TASK1_PRIO,	(TaskHandle_t*  )&Task1_Handler); //创建2任务xTaskCreate((TaskFunction_t )task2,     (const char*    )"task2",   (uint16_t       )TASK2_STACK_SIZE, (void*          )NULL,(UBaseType_t    )TASK2_PRIO,(TaskHandle_t*  )&Task2_Handler);    //创建3任务xTaskCreate((TaskFunction_t )task3,     (const char*    )"task3",   (uint16_t       )TASK3_STACK_SIZE, (void*          )NULL,(UBaseType_t    )TASK3_PRIO,(TaskHandle_t*  )&Task3_Handler);  								vTaskDelete(NULL); 							//删除开始任务taskEXIT_CRITICAL();            //退出临界区
}//1 任务函数
void task1(void *pvParameters)
{uint8_t 	 key = 0;BaseType_t err;char *buf;buf = &buff[0];while(1){key = Key_GetNum();if(key == 1 || key == 2){err = xQueueSend( key_queue, &key, portMAX_DELAY );if(err != pdTRUE){printf("key_queue队列发送失败\r\n");}}else if(key == 3){err = xQueueSend( big_data_queue, &buf, portMAX_DELAY );if(err != pdTRUE){printf("key_queue队列发送失败\r\n");}}vTaskDelay(50);}
}// 任务2 小数据出队函数
void task2(void *pvParameters)
{uint8_t    key = 0;BaseType_t err = 0;// 任务主循环while (1){err = xQueueReceive( key_queue,&key,portMAX_DELAY );if(err != pdTRUE){printf("key_queue队列读取失败\r\n");		}else{printf("key = %d\r\n",key);};}
}//不调用系统延时函数,因为xQueueReceive()函数如果读取完队列里面的数据,就会由就绪态转变为阻塞态;// 任务3 大数据出队函数
void task3(void *pvParameters)
{	char *    buf;BaseType_t err = 0;// 任务主循环while (1){err = xQueueReceive( big_data_queue, &buf, portMAX_DELAY);if(err != pdTRUE){printf("big_data_queue队列读取失败\r\n");		}else{printf("key = %s\r\n",buf);};}
}

 key.c

#include "stm32f10x.h"                  // Device header
#include "FreeRTOS.h"
#include "task.h"
#include "usart.h"
#include "Delay.h"/*** 函    数:按键初始化* 参    数:无* 返 回 值:无* 按键:PB4/PB12/PB14*/
void Key_Init(void)
{GPIO_InitTypeDef GPIO_InitStructure;/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);		//开启GPIOB的时钟/*GPIO初始化*/GPIO_InitStructure.GPIO_Mode 	= GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin 	= GPIO_Pin_4 | GPIO_Pin_12 | GPIO_Pin_14;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);					}/*** 函    数:按键获取键码* 参    数:无* 返 回 值:按下按键的键码值,范围:0~3,返回0代表没有按键按下* 注意事项:此函数是阻塞式操作,当按键按住不放时,函数会卡住,直到按键松手*/
uint8_t Key_GetNum(void)
{uint8_t KeyNum = 0;																				//定义变量,默认键码值为0if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4) == 0)			  //读PB4输入寄存器的状态,如果为0,则代表按键1按下{KeyNum= GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4);printf("KeyNum = %d\r\n",KeyNum);delay_xms(20);																					//延时消抖while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4) == 0);	//等待按键松手delay_xms(20);																					//延时消抖KeyNum = 1;																							//置键码为1}if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_12) == 0)			{KeyNum= GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_12);printf("KeyNum = %d\r\n",KeyNum);delay_xms(20);											while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_12) == 0);	delay_xms(20);									KeyNum = 2;											}if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14) == 0)			{KeyNum= GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14);printf("KeyNum = %d\r\n",KeyNum);delay_xms(20);											while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14) == 0);	delay_xms(20);									KeyNum = 3;											}return KeyNum;																						//返回键码值,如果没有按键按下,所有if都不成立,则键码为默认值0
}

 3、实验结果解析

开始运行:

按下按键1(PB4):

按下按键1,就会往队列key_queue里面写入key值(1),然后任务切换到task2将队列key_queue里面的数据读取出来;;

按下按键2(PB12):

按下按键2,就会往队列key_queue里面写入key值(2),然后任务切换到task2将队列key_queue里面的数据读取出来;

按下按键3(PB14) :

按下按键2,就会往队列big_data_queue里面写入key值(3),然后任务切换到task3将队列big_data_queue里面的数据读取出来;

三、重点 

使用队列相关函数时需要将下面宏置1(默认是1):

    #define configSUPPORT_DYNAMIC_ALLOCATION    1

 队列创建函数:

xQueueCreate( uxQueueLength, uxItemSize ) ;               //uxQueueLength:队列长度;uxItemSize 队列参数的大小

队列写入消息函数:

xQueueSend( xQueue, pvItemToQueue, xTicksToWait );        //xQueue:待写入的队列;pvItemToQueue:待写入的消息;xTicksToWait:阻塞超时时间

队列读取消息函数:

xQueueReceive( QueueHandle_t xQueue,void * const pvBuffer,TickType_t xTicksToWait ) ;          //xQueue:待读取的队列;pvBuffer:信息读取缓冲区;xTicksToWait:阻塞超时时间

问题:任务2(task2)和任务3(task3)没有系统延时函数(xTaskDelay()),按优先级来说应该一直执行任务3(task3),复位后却先执行了任务1(task1)?

答:因为xQueueReceive()和xQueueSend()函数,如果读取完或写入完队列里面的数据,自动会使任务由就绪态转变为阻塞态,知道队列里面有数据可以写入或者读出;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/74250.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2025年了,5G还有三个新变化

最近舆论开始讨论5G为什么不火了?5G是不是停滞发展了。 实际上,5G不仅在发展,还迎来了它的升级版5G-A。 在今年西班牙举行的世界移动通信大会上,5G-A就是焦点之一。 被誉为全球通信领域风向标的MWC,汇聚了华为、中兴通…

SQLMesh SCD-2 时间维度实战:餐饮菜单价格演化追踪

场景背景:动态菜单价格管理 考虑某连锁餐厅的菜单管理系统,需要记录食品价格的历史变更轨迹。业务需求包括: 记录每次价格调整的时间点支持历史价格查询(如"2020年1月2日汉堡多少钱")维护当前有效价格清单…

失物招领|校园失物招领系统|基于Springboot的校园失物招领系统设计与实现(源码+数据库+文档)

校园失物招领系统目录 目录 基于Springboot的校园失物招领系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、 管理员功能实现 (1) 失物招领管理 (2) 寻物启事管理 (3) 公告管理 (4) 公告类型管理 2、用户功能实现 (1) 失物招领 (2) 寻物启事 (3) 公告 …

基于BClinux8部署Ceph 19.2(squid)集群

#作者&#xff1a;闫乾苓 文章目录 1.版本选择Ceph版本发布历史目前官方在维护的版本 2.部署方法3.服务器规划4.前置配置4.1系统更新4.2配置hosts cat >> /etc/hosts << EOFssh-keygenssh-copy-id ceph01ssh-copy-id ceph02ssh-copy-id ceph034.5 Python34.6 Syst…

安装React开发者工具

我们在说组件之前&#xff0c;需要先安装一下React官方推出的开发者工具&#xff0c;首先我们分享在线安装方式 首先打开谷歌网上应用商店(针对谷歌浏览器)&#xff0c;在输入框内搜索react&#xff0c;安装如下插件&#xff1a; 注意安装提供方为Facebook的插件&#xff0c;这…

linux中如何修改文件的权限和拥有者所属组

目录标题 chmod指令八进制形式权限修改文件拥有者所属组的修改umask有关内容 chmod指令 chmod指令可以用来修改人员的权限其形式如下&#xff1a; u代表的是拥有者&#xff0c;g代表的是所属组&#xff0c;o代表的是其他人&#xff0c;a表示所有人&#xff0c;如果你想增加权…

三主热备架构

1.要求 角色主机名软件IP地址用户client192.168.72.90keepalivedvip192.168.72.100masterserverAkeepalived, nginx192.168.72.30backupserverBkeepalived, nginx192.168.72.31backupserverCkeepalived, nginx192.168.72.32webtomcat1tomcat192.168.72.41webtomcat2tomcat192.1…

windows 10 系统配置Node

目录 什么是Node.js 什么是Npm Node.js环境搭建 下载 解压 配置环境变量 npm配置 如何运行下载的Node.js项目 什么是Node.js 在 Node.js 之前&#xff0c;JavaScript 只能运行在浏览器中&#xff0c;作为网页脚本使用&#xff0c;为网页添加一些特效&#xff0c;或者和…

Windows Server 2025 使用 IIS 搭建 ASP.NET 3.5 网站

开启远程桌面 参考文章Windows server开启远程桌面教程打开服务管理器。ECS 配置安全组&#xff0c;开启 3389Telnet 验证网络联通性 telnet x.x.x.x 338安装 Windows App&#xff0c;登录验证 安装 ASP.NET 3.5 1.参考文章Windows Server 2012安装 .NET Framework 3.5和 Wi…

开源模型应用落地-shieldgemma-2-4b-it模型小试-多模态内容安全检测(一)

一、前言 在人工智能迅速发展的过程中,内容安全成为AI应用中的一个重要挑战。谷歌团队于2025年3月推出了一款名为ShieldGemma-2-4B-IT的模型,它以创新的多模态安全检测能力,为行业树立了新的开源责任AI标准。 与早期的仅支持文本审核的版本相比,ShieldGemma-2-4B-IT在谷歌的…

【数据预测】基于遗传算法GA的LSTM光伏功率预测 GA-LSTM光伏功率预测【Matlab代码#91】

文章目录 【可更换其他算法&#xff0c;获取资源请见文章第6节&#xff1a;资源获取】1. 遗传算法GA2. 长短期记忆网络LSTM3. 基于GA-LSTM的光伏功率预测4. 部分代码展示5. 运行结果展示6. 资源获取 【可更换其他算法&#xff0c;获取资源请见文章第6节&#xff1a;资源获取】 …

openEuler24.03 LTS下安装Hadoop3完全分布式

目录 Linux准备 openEuler24.03 LTS简介 下载openEuler24.03 LTS 安装openEuler24.03 LTS Linux基本设置 关闭及禁用防火墙 修改主机名 静态ip 映射主机名 创建普通用户 目录准备 克隆主机 配置机器之间免密登录 编写分发脚本 安装Java 下载Java 解压 设置环…

【Linux之Shell脚本实战】Linux服务器输出美观漂亮的html巡检报告

【Linux之Shell脚本实战】Linux服务器输出美观漂亮的html巡检报告 一、Shell脚本介绍1.1 Shell脚本简介1.2 Shell脚本特点二、脚本要求三、检查本地环境3.1 本地环境规划3.2 检查本地系统3.3 检查系统内核版本四、编辑脚本五、执行及测试脚本5.1设置定时任务5.2 执行效果六、总…

坦克大战(c++)

今天我给大家分享一个c游戏。 废话不多说&#xff0c;作品展示&#xff1a; #include <stdio.h> #include <windows.h> #include <time.h> //里规格&#xff1a;长39*278 &#xff08;真坐标&#xff09;(假坐标宽为39) 高39 //外规格&#xff1a;长…

node-ddk, electron组件, 自定义本地文件协议,打开本地文件

node-ddk 文件协议 https://blog.csdn.net/eli960/article/details/146207062 也可以下载demo直接演示 http://linuxmail.cn/go#node-ddk 安全 考虑到安全, 本系统禁止使用 file:/// 在主窗口, 自定义文件协议,可以多个 import main, { NODEDDK } from "node-ddk/m…

论文阅读:2023 arxiv Provable Robust Watermarking for AI-Generated Text

总目录 大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328 Provable Robust Watermarking for AI-Generated Text https://arxiv.org/pdf/2306.17439 https://github.com/XuandongZhao/Unigram-Watermark https://www.doubao.com/chat/211092…

一条sql语句在mysql中的执行流程(Mysql基础架构)

mysql基础架构 MySQL 主要分为 Server 层和 存储引擎层&#xff1a; Server 层&#xff1a;主要包括 连接器、查询缓存、分析器、优化器、执行器等&#xff0c;所有跨存储引擎的功能都在这一层实现&#xff0c;比如存储过程、触发器、视图&#xff0c;函数等&#xff0c;还有一…

GitLens with `Commit Graph`

文章目录 GitLens with Commit Graph GitLens with Commit Graph 想要更直观地查看 Git 提交历史&#xff1f;我打包了一个支持 Commit Graph 的 GitLens 版本&#xff0c;让你轻松在 VSCode 中查看分支、合并、变更记录等内容&#xff0c;一目了然&#xff01; &#x1f4cc…

C#里使用libxl的数字格式

由于EXCEL里可以表示不同的数字格式, 比如表示货币数字时,与表示普通序号的数字就不一样。 还有科学计算表示的数字使用小数点位数与普通货币也不一样。 如下所示: 要使用这些格式, 下面创建一个例子来演示保存这些数字格式: private void button11_Click(object send…

CentOS 7扩容 /dev/shm

在 CentOS 7 中&#xff0c;/dev/shm 是基于内存的临时文件系统&#xff08;tmpfs&#xff09;&#xff0c;其大小通常为系统内存的一半。要扩容 /dev/shm&#xff0c;可以通过重新挂载 tmpfs 并指定新的大小来实现。 扩容步骤 查看当前 /dev/shm 的大小&#xff1a; df -h /d…