河南做网站公司有哪些/更厉害的病毒2024

河南做网站公司有哪些,更厉害的病毒2024,大连零基础网站建设教学公司,怎么查询公司是不是中小企业【flink应用系列】1.Flink银行反欺诈系统设计方案 1. 经典案例:短时间内多次大额交易1.1 场景描述1.2 风险判定逻辑 2. 使用Flink实现2.1 实现思路2.2 代码实现2.3 使用Flink流处理 3. 使用Flink CEP实现3.1 实现思路3.2 代码实现 4. 总结 1. 经典案例:短…

【flink应用系列】1.Flink银行反欺诈系统设计方案

  • 1. 经典案例:短时间内多次大额交易
    • 1.1 场景描述
    • 1.2 风险判定逻辑
  • 2. 使用Flink实现
    • 2.1 实现思路
    • 2.2 代码实现
    • 2.3 使用Flink流处理
  • 3. 使用Flink CEP实现
    • 3.1 实现思路
    • 3.2 代码实现
  • 4. 总结

1. 经典案例:短时间内多次大额交易

1.1 场景描述

规则1:单笔交易金额超过10,000元。

规则2:同一用户在10分钟内进行了3次或更多次交易。

风险行为:同时满足规则1和规则2的交易行为。

1.2 风险判定逻辑

检测每笔交易是否满足“单笔交易金额超过10,000元”。

对同一用户,统计10分钟内的交易次数。

如果交易次数达到3次或更多,则判定为风险行为。

2. 使用Flink实现

2.1 实现思路

使用Flink的KeyedStream按用户分组。

使用ProcessFunction实现自定义窗口逻辑,统计10分钟内的交易次数。

结合规则1和规则2,判断是否为风险行为。

2.2 代码实现

// 定义交易数据POJO
public class Transaction {private String transactionId;private String userId;private Double amount;private Long timestamp;// getters and setters
}// 定义风控结果POJO
public class RiskResult {private String userId;private String transactionId;private String riskLevel;private String actionTaken;private Long createTime;// getters and setters
}// 实现风控逻辑
public class FraudDetectionProcessFunction extends KeyedProcessFunction<String, Transaction, RiskResult> {private transient ValueState<Integer> transactionCountState;private transient ValueState<Long> timerState;@Overridepublic void open(Configuration parameters) {// 初始化状态ValueStateDescriptor<Integer> countDescriptor = new ValueStateDescriptor<>("transactionCount", Types.INT);transactionCountState = getRuntimeContext().getState(countDescriptor);ValueStateDescriptor<Long> timerDescriptor = new ValueStateDescriptor<>("timerState", Types.LONG);timerState = getRuntimeContext().getState(timerDescriptor);}@Overridepublic void processElement(Transaction transaction,Context ctx,Collector<RiskResult> out) throws Exception {// 规则1:单笔交易金额超过10,000元if (transaction.getAmount() > 10000) {// 更新交易次数Integer count = transactionCountState.value();if (count == null) {count = 0;}count += 1;transactionCountState.update(count);// 如果是第一次满足规则1,设置10分钟的定时器if (count == 1) {long timer = ctx.timestamp() + 10 * 60 * 1000; // 10分钟ctx.timerService().registerEventTimeTimer(timer);timerState.update(timer);}// 规则2:10分钟内交易次数达到3次if (count >= 3) {RiskResult result = new RiskResult();result.setUserId(transaction.getUserId());result.setTransactionId(transaction.getTransactionId());result.setRiskLevel("HIGH");result.setActionTaken("ALERT");result.setCreateTime(System.currentTimeMillis());out.collect(result);}}}@Overridepublic void onTimer(long timestamp, OnTimerContext ctx, Collector<RiskResult> out) throws Exception {// 定时器触发时,重置状态transactionCountState.clear();timerState.clear();}
}

2.3 使用Flink流处理

java

DataStream<Transaction> transactionStream = env.addSource(transactionSource);DataStream<RiskResult> riskResultStream = transactionStream.keyBy(Transaction::getUserId).process(new FraudDetectionProcessFunction());riskResultStream.addSink(new AlertSink());

3. 使用Flink CEP实现

Flink CEP(Complex Event Processing)是Flink提供的复杂事件处理库,适合处理基于时间序列的模式匹配。以下是使用Flink CEP实现上述风控规则的示例。

3.1 实现思路

定义模式:检测10分钟内3次或更多次大额交易。

使用Flink CEP的模式匹配功能,匹配符合条件的事件序列。

3.2 代码实现

java

// 定义交易数据POJO
public class Transaction {private String transactionId;private String userId;private Double amount;private Long timestamp;// getters and setters
}// 定义风控结果POJO
public class RiskResult {private String userId;private List<String> transactionIds;private String riskLevel;private String actionTaken;private Long createTime;// getters and setters
}// 实现风控逻辑
public class FraudDetectionCEP {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 交易数据流DataStream<Transaction> transactionStream = env.addSource(transactionSource).assignTimestampsAndWatermarks(WatermarkStrategy.<Transaction>forBoundedOutOfOrderness(Duration.ofSeconds(5)).withTimestampAssigner((event, timestamp) -> event.getTimestamp()));// 按用户分组KeyedStream<Transaction, String> keyedStream = transactionStream.keyBy(Transaction::getUserId);// 定义CEP模式:10分钟内3次或更多次大额交易Pattern<Transaction, ?> pattern = Pattern.<Transaction>begin("first").where(new SimpleCondition<Transaction>() {@Overridepublic boolean filter(Transaction transaction) {return transaction.getAmount() > 10000;}}).next("second").where(new SimpleCondition<Transaction>() {@Overridepublic boolean filter(Transaction transaction) {return transaction.getAmount() > 10000;}}).next("third").where(new SimpleCondition<Transaction>() {@Overridepublic boolean filter(Transaction transaction) {return transaction.getAmount() > 10000;}}).within(Time.minutes(10));// 应用模式PatternStream<Transaction> patternStream = CEP.pattern(keyedStream, pattern);// 生成风控结果DataStream<RiskResult> riskResultStream = patternStream.process(new PatternProcessFunction<Transaction, RiskResult>() {@Overridepublic void processMatch(Map<String, List<Transaction>> match,Context ctx,Collector<RiskResult> out) throws Exception {RiskResult result = new RiskResult();result.setUserId(match.get("first").get(0).getUserId());result.setTransactionIds(match.values().stream().flatMap(List::stream).map(Transaction::getTransactionId).collect(Collectors.toList()));result.setRiskLevel("HIGH");result.setActionTaken("ALERT");result.setCreateTime(System.currentTimeMillis());out.collect(result);}});// 输出结果riskResultStream.addSink(new AlertSink());env.execute("Fraud Detection with Flink CEP");}
}

4. 总结

Flink实现:通过KeyedProcessFunction和状态管理实现多规则匹配。

Flink CEP实现:通过定义复杂事件模式,简化多规则匹配的逻辑。

适用场景:

Flink适合需要自定义逻辑的场景。

Flink CEP适合基于时间序列的模式匹配场景。

通过以上实现,可以高效检测银行交易中的风险行为,并根据需要扩展更多规则

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/72605.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言——链表

大神文献&#xff1a;https://blog.csdn.net/weixin_73588765/article/details/128356985 目录 一、链表概念 1. 什么是链表&#xff1f; 1.1 链表的构成 2. 链表和数组的区别 数组的特点&#xff1a; 链表的特点&#xff1a; 二者对比&#xff1a; 二…

Spring框架自带的定时任务:Spring Task详解

文章目录 一、基本使用1、配置&#xff1a;EnableScheduling2、触发器&#xff1a;Scheduled 二、拓展1、修改默认的线程池2、springboot配置 三、源码分析参考资料 一、基本使用 1、配置&#xff1a;EnableScheduling import org.springframework.context.annotation.Config…

数据库事务、乐观锁及悲观锁

参考&#xff1a;node支付宝支付及同步、异步通知、主动查询支付宝订单状态 以下容结合上述链接查看 1. 什么是数据库事务&#xff1f; 1.1. 连续执行数据库操作 在支付成功后&#xff0c;我们在自定义的paidSuccess里&#xff0c;依次更新了订单状态和用户信息。也就说这里…

SCI期刊推荐 | 免版面费 | 计算机领域:信息系统、软件工程、自动化和控制

在学术研究领域&#xff0c;选择合适的SCI期刊对科研成果的传播与认可至关重要。了解SCI期刊的研究领域和方向是基础&#xff0c;确保投稿内容与期刊主题相符。同时&#xff0c;要关注期刊的影响因子和评估标准&#xff0c;选择具有较高影响力和学术认可度的期刊。阅读期刊的投…

常见webshell工具的流量特征

1、蚁剑 1.1、蚁剑webshell静态特征 蚁剑中php使用assert、eval执行&#xff1b;asp只有eval执行&#xff1b;在jsp使用的是Java类加载&#xff08;ClassLoader&#xff09;&#xff0c;同时会带有base64编码解码等字符特征。 1.2、蚁剑webshell动态特征 查看流量分析会发现…

爬虫系列之【数据解析之bs4】《四》

目录 前言 一、用法详解 1.1 获取标签内容 1.2 获取标签属性 1.3 获取标签包裹的文本内容 1.4 获取标签列表 1.5 css 选择器&#xff1a;select 二、实战案例 完整代码 前言 HTML数据解析 1、正则 2、xpath&#xff08;居多&#xff09; 3、css 选择器&#xff08;bs…

Java-实现PDF合同模板填写内容并导出PDF文件

可用于公司用户合同导出pdf文件 效果图 一、导入所需要jar包 <!--生成PDF--><dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.11</version></dependency><dependency&…

【人工智能】GPT-4 vs DeepSeek-R1:谁主导了2025年的AI技术竞争?

前言 2025年&#xff0c;人工智能技术将迎来更加激烈的竞争。随着OpenAI的GPT-4和中国初创公司DeepSeek的DeepSeek-R1在全球范围内崭露头角&#xff0c;AI技术的竞争格局开始发生变化。这篇文章将详细对比这两款AI模型&#xff0c;从技术背景、应用领域、性能、成本效益等多个方…

前端开发10大框架深度解析

摘要 在现代前端开发中&#xff0c;框架的选择对项目的成功至关重要。本文旨在为开发者提供一份全面的前端框架指南&#xff0c;涵盖 React、Vue.js、Angular、Svelte、Ember.js、Preact、Backbone.js、Next.js、Nuxt.js 和 Gatsby。我们将从 简介、优缺点、适用场景 以及 实际…

【MySQL】索引(页目录、B+树)

文章目录 1. 引入索引2. MySQL与磁盘交互的基本单位3. 索引的理解3.1 页目录3.2 B树 4. 聚簇索引、非聚簇索引5. 索引的操作5.1 索引的创建5.1.1 创建主键索引5.1.2 创建唯一索引5.1.3 普通索引的创建5.1.4 全文索引的创建 5.2 索引的查询5.3 删除索引 1. 引入索引 索引&#…

Vue 3 整合 WangEditor 富文本编辑器:从基础到高级实践

本文将详细介绍如何在 Vue 3 项目中集成 WangEditor 富文本编辑器&#xff0c;实现图文混排、自定义扩展等高阶功能。 一、为什么选择 WangEditor&#xff1f; 作为国内流行的开源富文本编辑器&#xff0c;WangEditor 具有以下优势&#xff1a; 轻量高效&#xff1a;压缩后仅…

NL2SQL-基于Dify+阿里通义千问大模型,实现自然语音自动生产SQL语句

本文基于Dify阿里通义千问大模型&#xff0c;实现自然语音自动生产SQL语句功能&#xff0c;话不多说直接上效果图 我们可以试着问他几个问题 查询每个部门的员工数量SELECT d.dept_name, COUNT(e.emp_no) AS employee_count FROM employees e JOIN dept_emp de ON e.emp_no d…

双链路提升网络传输的可靠性扩展可用带宽

为了提升网络传输的可靠性或增加网络可用带宽&#xff0c; 通常使用双链路冗余备份或者双链路聚合的方式。 本文介绍几种双链路网络通信的案例。 5GWiFi冗余传输 双Socket绑定不同网络接口&#xff1a;通过Android的ConnectivityManager绑定5G蜂窝网络和WiFi的Socket连接&…

LeetCode 解题思路 10(Hot 100)

解题思路&#xff1a; 上边&#xff1a; 从左到右遍历顶行&#xff0c;完成后上边界下移&#xff08;top&#xff09;。右边&#xff1a; 从上到下遍历右列&#xff0c;完成后右边界左移&#xff08;right–&#xff09;。下边&#xff1a; 从右到左遍历底行&#xff0c;完成后…

GCC RISCV 后端 -- C语言语法分析过程

在 GCC 编译一个 C 源代码时&#xff0c;先会通过宏处理&#xff0c;形成 一个叫转译单元&#xff08;translation_unit&#xff09;&#xff0c;接着进行语法分析&#xff0c;C 的语法分析入口是 static void c_parser_translation_unit(c_parser *parser); 接着就通过类似递…

第十五届蓝桥杯Scratch12月stema选拔赛真题—消失的水母

消失的水母 编程实现&#xff1a; 消失的水母。&#xff08;角色、背景非源素材&#xff09; 具体要求&#xff1a; 1、每次点击绿旗&#xff0c;水母说“请输入 2&#xff5e;10 的整数”&#xff0c;同时在舞台下方显示输入框&#xff0c;如图所示; 完整题目可点击下方链…

Redis设计与实现-数据结构

Redis数据结构 1、RedisObject对象2、简单动态字符串2.1 SDS定义2.2 SDS与C语言的区别2.3 SDS的空间分配策略2.3.1 空间预分配2.3.2 惰性空间释放 2.4 SDS的API 3、链表3.1 链表的定义3.2 链表的API 4、字典4.1 字典的定义4.2 哈希算法4.3 哈希表的扩缩4.3.1 哈希表扩缩的判断依…

由麻省理工学院计算机科学与人工智能实验室等机构创建低成本、高效率的物理驱动数据生成框架,助力接触丰富的机器人操作任务

2025-02-28&#xff0c;由麻省理工学院计算机科学与人工智能实验室&#xff08;CSAIL&#xff09;和机器人与人工智能研究所的研究团队创建了一种低成本的数据生成框架&#xff0c;通过结合物理模拟、人类演示和基于模型的规划&#xff0c;高效生成大规模、高质量的接触丰富型机…

计算机视觉|ViT详解:打破视觉与语言界限

一、ViT 的诞生背景 在计算机视觉领域的发展中&#xff0c;卷积神经网络&#xff08;CNN&#xff09;一直占据重要地位。自 2012 年 AlexNet 在 ImageNet 大赛中取得优异成绩后&#xff0c;CNN 在图像分类任务中显示出强大能力。随后&#xff0c;VGG、ResNet 等深度网络架构不…

SpringTask 引起的错误

SpringTask 引起的错误 1. 场景 在使用 SpringBoot 编写后台程序时&#xff0c;当在浏览器页面中发起请求时&#xff0c;MP 自动填充来完成一些字段的填充&#xff0c;例如创建时间、创建人、更新时间、更新人等。但是当编写微信小程序时&#xff0c;由于一些字段无法进行自动…