每一个神经元做的是一个类似回归的操作
最后一层是softmax函数,每一个输出就会变成一个0到1之间的数,也就是概率,然后他们之间的和加起来等于1,到底是哪一个分类就是看哪个神经元的这个值最大。
那么如何算损失呢:
加入现在有0.2,0.7,0.1,会把他们变成one-hot编码,比如0.2就变成010,损失就是在他们之间求损失,使用交叉熵公式。
用每一个真实值yic乘以log概率值:
与均方误差来计算损失相比,交叉熵更能捕捉到预测变化的差异
最后一层是softmax函数,每一个输出就会变成一个0到1之间的数,也就是概率,然后他们之间的和加起来等于1,到底是哪一个分类就是看哪个神经元的这个值最大。
那么如何算损失呢:
加入现在有0.2,0.7,0.1,会把他们变成one-hot编码,比如0.2就变成010,损失就是在他们之间求损失,使用交叉熵公式。
用每一个真实值yic乘以log概率值:
与均方误差来计算损失相比,交叉熵更能捕捉到预测变化的差异
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/72506.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!