SCI一区 | WOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Matlab)

SCI一区 | WOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Matlab)

目录

    • SCI一区 | WOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Matlab)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现WOA-BiTCN-BiGRU-Attention鲸鱼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信博主回复WOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Matlab)
%%  清空环境变量
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
warning off             % 关闭报警信息
%% 导入数据
res = xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
enddisp('程序运行时间较长,需迭代popsize*maxgen次!可自行调整运行参数')%%  初始化DBO参数
popsize = 20;                            %  初始种群规模
maxgen = 10;                             %  最大进化代数
fobj = @(x)objectiveFunction(x,f_,vp_train,vt_train,vp_test,T_test,ps_output);%%  优化算法参数设置
lb = [0.0001 10 20  0.00001];           %  参数的下限。分别是学习率,BiGRU的神经元个数,滤波器个数, 正则化参数
ub = [0.01 100 120 0.005];               %  参数的上限
dim = length(lb);%数量%%  将优化目标参数传进来的值 转换为需要的超参数
learning_rate = Best_pos(1);                   %  学习率
NumNeurons = round(Best_pos(2));               %  BiGRU神经元个数
numFilters = round(Best_pos(3));               %  滤波器个数
L2Regularization = Best_pos(4);                %  正则化参数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop *  P_percent );    % The population size of the producers   

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/7239.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】学习笔记——list

文章目录 八、list1. list的介绍2. list的使用3. list的模拟实现4. list模拟实现的代码整合1. list.h2. test.cpp 未完待续 八、list list链接 1. list的介绍 是的, list 就是带头双向循环链表。 2. list的使用 通过 string 和 vector 的学习,我们差…

PT通过size vt修时序脚本

常用到mmmc的情况下通过synopsys的prime time的multisceanrio 模式提高fix 效率 以下内容仅供学习参考 ##start job:dsubjob pt_shell -multi_scenario -f setup_size_vt.tcl set date [exec date %m%d%H%M] set work_path setup_fixvt_${date} sh rm -rf ./$work/* set_hos…

基于TL431和CSA的恒压与负压输出

Hello uu们,51去那里玩了呀?该收心回来上班了,嘿嘿! 为什么会有这个命题,因为我的手头只有这些东西如何去实现呢?让我们一起来看电路图吧.电路图如下图1所示 图1:CSA恒压输出电路 图1中,R1给U2提供偏置,Q1给R1提供电流,当U1-VOUT输出大于2.5V时候,U2内部的三极管CE导通,使得…

第四百九十二回

文章目录 1. 概念介绍2. 使用方法2.1 SegmentedButton2.2 ButtonSegment 3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 我们在上一章回中介绍了"SearchBar组件"相关的内容,本章回中将介绍SegmentedButton组件.闲话休提,让我们一起Talk …

Qt扫盲-Qt D-Bus概述

Qt D-Bus概述 一、概述二、总线三、相关概念1. 消息2. 服务名称3. 对象的路径4. 接口5. 备忘单 四、调试五、使用Qt D-Bus 适配器1. 在 D-Bus 适配器中声明槽函数1. 异步槽2. 只输入槽3. 输入输出槽4. 自动回复5. 延迟回复 一、概述 D-Bus是一种进程间通信(IPC)和远程过程调用…

分布式与一致性协议之ZAB协议(四)

ZAB协议 ZooKeeper是如何选举领导者的。 首先我们来看看ZooKeeper是如何实现成员身份的? 在ZooKeeper中,成员状态是在QuorumPeer.java中实现的,为枚举型变量 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING }其实&…

【JAVA入门】Day03 - 数组

【JAVA入门】Day03 - 数组 文章目录 【JAVA入门】Day03 - 数组一、数组的概念二、数组的定义2.1 数组的静态初始化2.2 数组的地址值2.3 数组元素的访问2.4 数组遍历2.5 数组的动态初始化2.6 数组的常见操作2.7 数组的内存分配2.7.1 Java内存分配2.7.2 数组的内存图 一、数组的概…

【数据结构】--- 深入剖析二叉树(中篇)--- 认识堆堆排序Topk

Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏: 数据结构之旅 文章目录 🏠 初识堆 📒 堆的概念 📒 堆的性质 🏠 向上调整算法 && 向下调整算…

2024年5月营销日历,追热点做营销必备~

5月1日 劳动节 劳动节是致敬辛勤劳动者的节日,也是商家们争相推出优惠活动的黄金时期。以5.1元、51元或5.1折作为营销点,不仅能紧扣节日主题,还能吸引大量消费者。比如,推出抽奖活动,幸运者有机会享受全单5.1折的优惠…

【云原生】Pod 的生命周期(一)

【云原生】Pod 的生命周期(一)【云原生】Pod 的生命周期(二) Pod 的生命周期(一) 1.Pod 生命期2.Pod 阶段3.容器状态3.1 Waiting (等待)3.2 Running(运行中)3…

《Python编程从入门到实践》day20

#尝试在python3.11文件夹和pycharm中site-packages文件夹中安装,最终在scripts文件夹中新建py文件成功导入pygame运行程序 #今日知识点学习 import sysimport pygameclass AlienInvasion:"""管理游戏资源和行为的类"""def __init__(…

memory consistency

memory consistency model 定义了对于programmer和implementor来说,访问shared memory system的行为; 对于programmer而言,他知道期望值是什么, 知道会返回什么样的数据;; 对于implementro而言,…

微信小程序原生代码实现小鱼早晚安打卡小程序

大家好,我是雄雄,欢迎关注微信公众号:雄雄的小课堂 小鱼早晚安打卡小程序:开启健康生活,共享正能量 在这个快节奏的时代,我们常常被各种琐事和压力所困扰,以至于忽略了对健康生活方式的追求。然…

【探秘地球宝藏】矿产资源知多少?

当我们仰望高楼林立的城市,乘坐便捷的交通工具,享受各种现代生活的便利时,你是否曾想过这一切背后的支撑力量?答案就藏在我们脚下——矿产资源,这些大自然赋予的宝贵财富,正是现代社会发展的基石。今天&…

OpenHarmony 实战开发——ABI

OpenHarmony系统支持丰富的设备形态,支持多种架构指令集,支持多种操作系统内核;为了应用在各种OpenHarmony设备上的兼容性,本文定义了"OHOS" ABI(Application Binary Interface)的基础标准&#…

【Numpy】一文向您详细介绍 np.linspace()

【Numpy】一文向您详细介绍 np.linspace() 🌈 欢迎莅临我的个人主页👈 这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!🎇 🎓 博主简介:985高校的计算机专业人士,热衷于分享技术见…

idea中取消自动导包顺序

1、取消自动导入 2、取消导包顺序设置

英语写作中“最后”finally、eventually、in the end、at last的用法

一、finally 是最通用的单词,它可以表示所有中文里“最后”的意思,例如: First do Task 1. Then do Task 2. Finally do Task 3.(首先做任务1,再做任务2,最后做任务3。) 上面是描述一个协议的…

Python学习笔记------处理数据和生成折线图

给定数据: jsonp_1629344292311_69436({"status":0,"msg":"success","data":[{"name":"美国","trend":{"updateDate":["2.22","2.23","2.24",&qu…

实用的Chrome浏览器命令

Google Chrome 是一款广泛使用的网络浏览器,它提供了许多实用的快捷键和命令,可以帮助用户更高效地浏览网页。以下是一些常用的 Chrome 浏览器命令: 1. 新标签页: Ctrl T (Windows/Linux) 或 Command T (Mac) 2. 关闭当前标签: Ctrl W 或…