广州商城网站建设公司/四川企业seo

广州商城网站建设公司,四川企业seo,用yii框架做的网站如何搭建,传奇世界手游官网什么是光流估计? 光流估计的前提? 基本假设 亮度恒定假设:目标像素点的亮度在相邻帧之间保持不变。这是光流计算的基础假设,基于此可以建立数学方程来求解光流。时间连续或运动平滑假设:相邻帧之间的时间间隔足够小&a…

什么是光流估计?

在这里插入图片描述

光流估计的前提?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本假设

  • 亮度恒定假设:目标像素点的亮度在相邻帧之间保持不变。这是光流计算的基础假设,基于此可以建立数学方程来求解光流。
  • 时间连续或运动平滑假设:相邻帧之间的时间间隔足够小,使得像素点的运动是连续的,不会发生突变;或者说相邻像素点的运动情况是相似的,具有平滑性。

经典算法

  • Lucas-Kanade 光流算法:该算法基于局部平滑假设,通过在一个小的窗口内对多个像素点进行约束,求解光流方程。它是一种基于梯度的方法,计算效率较高,常用于实时性要求较高的应用中。
  • Horn-Schunck 光流算法:是一种全局的光流估计算法,在亮度恒定和光滑性约束的基础上,通过最小化一个能量函数来求解光流。它考虑了整幅图像的信息,能够得到较为平滑的光流场,但计算量相对较大。
  • 基于深度学习的光流估计算法:近年来,随着深度学习的发展,基于卷积神经网络(CNN)的光流估计算法取得了很好的效果。例如 FlowNet、PWC-Net 等,这些算法通过大量的训练数据学习图像之间的运动模式,能够处理复杂的场景和运动情况,并且在精度和速度上都有了很大的提升。

实例

对视频中的人物走动轨迹进行光流追踪处理。
实现了基于 Lucas - Kanade 算法的稀疏光流估计,用于处理视频中的运动跟踪。

  • 导入必要的库
import numpy as np
import cv2

导入numpy库用于数值计算,cv2是 OpenCV 库,用于计算机视觉任务

  • 打开视频文件并初始化颜色
cap = cv2.VideoCapture('test.avi')
color = np.random.randint(0, 255, (100, 3))

cv2.VideoCapture(‘test.avi’):打开名为test.avi的视频文件。
np.random.randint(0, 255, (100, 3)):生成 100 个随机的 RGB 颜色,用于后续绘制光流轨迹。

  • 读取第一帧并转换为灰度图
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)

cap.read():读取视频的第一帧,ret是一个布尔值,表示是否成功读取帧,old_frame是读取的帧图像。
cv2.cvtColor():将彩色图像转换为灰度图像,因为光流估计通常在灰度图像上进行。

  • 检测特征点
feature_params = dict(maxCorners=100,qualityLevel=0.3,minDistance=7)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)

cv2.goodFeaturesToTrack():使用 Shi - Tomasi 角点检测算法检测图像中的特征点。

feature_params是一个字典,包含了角点检测的参数:

  • maxCorners:最多检测的角点数量。
  • qualityLevel:角点质量的阈值,只有质量高于该阈值的角点才会被保留。
  • minDistance:相邻角点之间的最小距离。
  • 初始化掩码图像
mask = np.zeros_like(old_frame)

创建一个与第一帧图像大小相同的全零掩码图像,用于绘制光流轨迹。

  • 设置 Lucas - Kanade 光流算法的参数
lk_params = dict(winSize=(15, 15),maxLevel=2)

winSize:搜索窗口的大小,用于在计算光流时对每个像素点周围的区域进行分析。
maxLevel:金字塔的最大层数,用于处理大位移的光流。

  • 循环处理视频帧
while True:ret, frame = cap.read()if not ret:breakframe_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)good_new = p1[st == 1]good_old = p0[st == 1]

cap.read():读取视频的下一帧。
cv2.calcOpticalFlowPyrLK():使用金字塔 Lucas - Kanade 算法计算光流。

  • old_gray:前一帧的灰度图像。
  • frame_gray:当前帧的灰度图像。
  • p0:前一帧检测到的特征点。
  • p1:当前帧中对应的特征点位置。
  • st:状态数组,用于表示每个特征点是否被成功跟踪,st == 1表示成功跟踪。
  • err:每个特征点的跟踪误差。
  • 绘制光流轨迹
    for i, (new, old) in enumerate(zip(good_new, good_old)):a, b = new.ravel()c, d = old.ravel()a, b, c, d = int(a), int(b), int(c), int(d)mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)img = cv2.add(frame, mask)

cv2.line():在掩码图像上绘制从旧特征点到新特征点的线段。
cv2.add():将掩码图像与当前帧图像叠加,得到带有光流轨迹的图像。

  • 显示结果并更新帧信息
 cv2.imshow('mask', mask)cv2.imshow('frame', img)k = cv2.waitKey(150)if k == 27:breakold_gray = frame_gray.copy()p0 = good_new.reshape(-1, 1, 2)

cv2.imshow():显示掩码图像和带有光流轨迹的图像。
cv2.waitKey(150):等待 150 毫秒,按下按键则返回按键的 ASCII 码。
k == 27:如果按下 ESC 键(ASCII 码为 27),则退出循环。
更新前一帧的灰度图像和特征点信息,以便下一帧的光流计算。

  • 释放资源
cv2.destroyAllWindows()
cap.release()

cv2.destroyAllWindows():关闭所有打开的窗口。
cap.release():释放视频捕获对象。
这段代码通过 Lucas - Kanade 算法实现了视频中特征点的光流估计,并将光流轨迹绘制在视频帧上。它可以帮助我们观察视频中物体的运动情况。

  • 结果:
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/71915.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

信息系统的安全防护

文章目录 引言**1. 物理安全****2. 网络安全****3. 数据安全****4. 身份认证与访问控制****5. 应用安全****6. 日志与监控****7. 人员与管理制度****8. 其他安全措施****9. 安全防护框架**引言 从技术、管理和人员三个方面综合考虑,构建多层次、多维度的安全防护体系。 信息…

如何防止 Instagram 账号被盗用:安全设置与注意事项

如何防止 Instagram 账号被盗用:安全设置与注意事项 在这个数字化时代,社交媒体平台如 Instagram 已成为我们日常生活的一部分。然而,随着网络犯罪的增加,保护我们的在线账户安全变得尤为重要。以下是一些关键的安全设置和注意事…

Redis|复制 REPLICA

文章目录 是什么能干嘛怎么玩案例演示复制原理和工作流程复制的缺点 是什么 官网地址:https://redis.io/docs/management/replication/Redis 复制机制用于将数据从一个主节点(Master)复制到一个或多个从节点(Slave)&a…

树莓集团南京产业园再布局:深入剖析背后逻辑

在产业园区蓬勃发展的当下,树莓集团在南京的产业园再布局行动备受瞩目。这一举措并非偶然,其背后蕴含着深刻且多元的战略逻辑。 一、顺应区域产业发展趋势 南京作为长三角地区的重要城市,产业基础雄厚且多元。近年来,南京大力推动…

Spring源码分析の循环依赖

文章目录 前言一、循环依赖问题二、循环依赖的解决三、整体流程分析 前言 常见的可能存在循环依赖的情况如下: 两个bean中互相持有对方作为自己的属性。   类似于: 两个bean中互相持有对方作为自己的属性,且在构造时就需要传入&#xff1a…

Docker 部署 Jenkins持续集成(CI)工具

[TOC](Docker 部署 Jenkins持续集成(CI)工具) 前言 Jenkins 是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中。通过 Docker 部署 Jenkins,可以简化安装和配置过程,并…

《Effective Objective-C》阅读笔记(中)

目录 接口与API设计 用前缀避免命名空间冲突 提供“全能初始化方法” 实现description方法 尽量使用不可变对象 使用清晰而协调的命名方式 方法命名 ​编辑类与协议命名 为私有方法名加前缀 理解OC错误模型 理解NSCopying协议 协议与分类 通过委托与数据源协议进行…

C++程序员内功修炼——Linux C/C++编程技术汇总

在软件开发的宏大版图中,C 语言宛如一座巍峨的高山,吸引着无数开发者攀登探索。而 Linux 操作系统,以其开源、稳定、高效的特性,成为了众多开发者钟爱的开发平台。将 C 与 Linux 相结合,就如同为开发者配备了一把无坚不…

嵌入式八股文(五)硬件电路篇

一、名词概念 1. 整流和逆变 (1)整流:整流是将交流电(AC)转变为直流电(DC)。常见的整流电路包括单向整流(二极管)、桥式整流等。 半波整流:只使用交流电的正…

精选案例展 | 智己汽车—全栈可观测驱动智能化运营与成本优化

本案例为“观测先锋 2024 可观测平台创新应用案例大赛”精选案例,同时荣获IT168“2024技术卓越奖评选-年度创新解决方案”奖。 项目背景 近年来,中国汽车行业进入转型升级阶段,智能网联技术成为行业发展的核心。车联网、自动驾驶等技术的加速…

速通HTML

目录 HTML基础 1.快捷键 2.标签 HTML进阶 1.列表 a.无序列表 b.有序列表 c.定义列表 2.表格 a.内容 b.合并单元格 3.表单 a.input标签 b.单选框 c.上传文件 4.下拉菜单 5.文本域标签 6.label标签 7.按钮标签 8.无语义的布局标签div与span 9.字符实体 HTML…

IP离线库助力破解网络反诈难题

毫秒级响应识别异常访问 IP离线库集成全球全量IP地址的详细信息,包括地理地址查询、运营商、经纬度、代理识别等多种维度数据。例如: 当用户账号频繁从北京、越南等多地IP登录时,系统将自动触发风险预警; 检测到访问IP为已知机…

lattice hdl实现spi接口

在lattice工具链中实现SPI接口通常涉及以下步骤: 定义硬件SPI接口的管脚。配置SPI时钟和模式。编写SPI主机或从机的控制逻辑。 展示了如何在Lattice工具链中使用HDL语言(例如Verilog)来配置SPI接口: lattice工程 顶层:spi_slave_top.v `timescale 1ns/ 1ps module spi_…

Cesium@1.126.0,创建3D瓦片,修改样式

第一步:添加3D建筑 Cesium.createOsmBuildingsAsync()这是一个异步方法,所以要写在一个异步函数里 创建一个函数 const create3DBuilding async (viewer) > {try {// 添加3D建筑const tileset await Cesium.createOsmBuildingsAsync();viewer.scen…

基于 C++ Qt 的 Fluent Design 组件库 QFluentWidgets

简介 QFluentWidgets 是一个基于 Qt 的 Fluent Designer 组件库,内置超过 150 个开箱即用的 Fluent Designer 组件,支持亮暗主题无缝切换和自定义主题色。 编译示例 以 Qt5 为例(Qt6 也支持),将 libQFluentWidgets.d…

React 源码揭秘 | 更新队列

前面几篇遇到updateQueue的时候,我们把它先简单的当成了一个队列处理,这篇我们来详细讨论一下这个更新队列。 有关updateQueue中的部分,可以见源码 UpdateQueue实现 Update对象 我们先来看一下UpdateQueue中的内容,Update对象&…

[SQL] 事务的四大特性(ACID)

🎄事务的四大特性 以下就是事务的四大特性,简称ACID。 原子性📢事务时不可分割的最小操作单元,要么全部成功,要么全部失败。一致性📢事务完成后,必须使所有的数据都保持一致隔离性&#x1f4e2…

DeepSeek 提示词:基础结构

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…

Apache DolphinScheduler系列1-单节点部署及测试报告

文章目录 整体说明一、部署环境二、版本号三、部署方案四、部署步骤4.1、上传部署包4.2、创建外部数据库4.3、修改元数据库配置4.4、上传MySQLl驱动程序4.5、初始化外部数据库4.6、启停服务4.7、访问页面五、常见问题及解决方式5.1、时间不一致5.2、异常终止5.3、大量日志5.4、…

LLM之论文阅读——Context Size对RAG的影响

前言 RAG 系统已经在多个行业中得到广泛应用,尤其是在企业内部文档查询等场景中。尽管 RAG 系统的应用日益广泛,关于其最佳配置的研究却相对缺乏,特别是在上下文大小、基础 LLM 选择以及检索方法等方面。 论文原文: On the Influence of Co…