【计算机网络】TCP/IP 网络模型有哪几层?

目录

应用层

传输层

网络层

网络接口层

总结


为什么要有 TCP/IP 网络模型?

对于同一台设备上的进程间通信,有很多种方式,比如有管道、消息队列、共享内存、信号等方式,而对于不同设备上的进程间通信,就需要网络通信,而设备是多样性的,所以要兼容多种多样的设备,就协商出了一套通用的网络协议

这个网络协议是分层的,每一层都有各自的作用和职责,接下来就根据「 TCP/IP 网络模型」分别对每一层进行介绍。

应用层

最上层的,也是我们能直接接触到的就是应用层Application Layer),我们电脑或手机使用的应用软件都是在应用层实现。那么,当两个不同设备的应用需要通信的时候,应用就把应用数据传给下一层,也就是传输层。

所以,应用层只需要专注于为用户提供应用功能,比如 HTTP、FTP、Telnet、DNS、SMTP等。

应用层是不用去关心数据是如何传输的,就类似于,我们寄快递的时候,只需要把包裹交给快递员,由他负责运输快递,我们不需要关心快递是如何被运输的。

而且应用层是工作在操作系统中的用户态,传输层及以下则工作在内核态。

传输层

应用层的数据包会传给传输层,传输层Transport Layer)是为应用层提供网络支持的。

在传输层会有两个传输协议,分别是 TCP 和 UDP。

TCP 的全称叫传输控制协议(Transmission Control Protocol),大部分应用使用的正是 TCP 传输层协议,比如 HTTP 应用层协议。TCP 相比 UDP 多了很多特性,比如流量控制、超时重传、拥塞控制等,这些都是为了保证数据包能可靠地传输给对方。

UDP 相对来说就很简单,简单到只负责发送数据包,不保证数据包是否能抵达对方,但它实时性相对更好,传输效率也高。当然,UDP 也可以实现可靠传输,把 TCP 的特性在应用层上实现就可以,不过要实现一个商用的可靠 UDP 传输协议,也不是一件简单的事情。

应用需要传输的数据可能会非常大,如果直接传输就不好控制,因此当传输层的数据包大小超过 MSS(TCP 最大报文段长度) ,就要将数据包分块,这样即使中途有一个分块丢失或损坏了,只需要重新发送这一个分块,而不用重新发送整个数据包。在 TCP 协议中,我们把每个分块称为一个 TCP 段TCP Segment)。

当设备作为接收方时,传输层则要负责把数据包传给应用,但是一台设备上可能会有很多应用在接收或者传输数据,因此需要用一个编号将应用区分开来,这个编号就是端口。 

比如 80 端口通常是 Web 服务器用的,22 端口通常是远程登录服务器用的。而对于浏览器(客户端)中的每个标签栏都是一个独立的进程,操作系统会为这些进程分配临时的端口号。

由于传输层的报文中会携带端口号,因此接收方可以识别出该报文是发送给哪个应用。

网络层

传输层可能大家刚接触的时候,会认为它负责将数据从一个设备传输到另一个设备,事实上它并不负责。

实际场景中的网络环节是错综复杂的,中间有各种各样的线路和分叉路口,如果一个设备的数据要传输给另一个设备,就需要在各种各样的路径和节点进行选择,而传输层的设计理念是简单、高效、专注,如果传输层还负责这一块功能就有点违背设计原则了。

也就是说,我们不希望传输层协议处理太多的事情,只需要服务好应用即可,让其作为应用间数据传输的媒介,帮助实现应用到应用的通信,而实际的传输功能就交给下一层,也就是网络层Internet Layer)。

 网络层最常使用的是 IP 协议(Internet Protocol),IP 协议会将传输层的报文作为数据部分,再加上 IP 包头组装成 IP 报文,如果 IP 报文大小超过 MTU(以太网中一般为 1500 字节)就会再次进行分片,得到一个即将发送到网络的 IP 报文。

网络层负责将数据从一个设备传输到另一个设备,世界上那么多设备,又该如何找到对方呢?因此,网络层需要有区分设备的编号。 

我们一般用 IP 地址给设备进行编号,对于 IPv4 协议, IP 地址共 32 位,分成了四段(比如,192.168.100.1),每段是 8 位。只有一个单纯的 IP 地址虽然做到了区分设备,但是寻址起来就特别麻烦,全世界那么多台设备,难道一个一个去匹配?这显然不科学。

因此,需要将 IP 地址分成两种意义:

  • 一个是网络号,负责标识该 IP 地址是属于哪个「子网」的;
  • 一个是主机号,负责标识同一「子网」下的不同主机;

怎么分的呢?这需要配合子网掩码才能算出 IP 地址 的网络号和主机号。

举个例子,比如 10.100.122.0/24,后面的/24表示就是 255.255.255.0 子网掩码,255.255.255.0 二进制是「11111111-11111111-11111111-00000000」,大家数数一共多少个1?不用数了,是 24 个1,为了简化子网掩码的表示,用/24代替255.255.255.0。

知道了子网掩码,该怎么计算出网络地址和主机地址呢?

将 10.100.122.2 和 255.255.255.0 进行按位与运算,就可以得到网络号,如下图:

将 255.255.255.0 取反后与IP地址进行进行按位与运算, 就可以得到主机号。

大家可以去搜索下子网掩码计算器,自己改变下「掩码位」的数值,就能体会到子网掩码的作用了。

那么在寻址的过程中,先匹配到相同的网络号(表示要找到同一个子网),才会去找对应的主机。 

除了寻址能力, IP 协议还有另一个重要的能力就是路由。实际场景中, 两台设备并不是用一条网线连接起来的,而是通过很多网关、路由器、交换机等众多网络设备连接起来的,那么就会形成很多条网络的路径,因此当数据包到达一个网络节点,就需要通过路由算法决定下一步走哪条路径。

路由器寻址工作中,就是要找到目标地址的子网,找到后进而把数据包转发给对应的网络内。

 

所以,IP 协议的寻址作用是告诉我们去往下一个目的地该朝哪个方向走,路由则是根据「下一个目的地」选择路径。寻址更像在导航,路由更像在操作方向盘。 

网络接口层

生成了 IP 头部之后,接下来要交给网络接口层Link Layer)在 IP 头部的前面加上 MAC 头部,并封装成数据帧(Data frame)发送到网络上。

IP 头部中的接收方 IP 地址表示网络包的目的地,通过这个地址我们就可以判断要将包发到哪里,但在以太网的世界中,这个思路是行不通的。

什么是以太网呢?电脑上的以太网接口,Wi-Fi接口,以太网交换机、路由器上的千兆,万兆以太网口,还有网线,它们都是以太网的组成部分。以太网就是一种在「局域网」内,把附近的设备连接起来,使它们之间可以进行通讯的技术。 

以太网在判断网络包目的地时和 IP 的方式不同,因此必须采用相匹配的方式才能在以太网中将包发往目的地,而 MAC 头部就是干这个用的,所以,在以太网进行通讯要用到 MAC 地址。

MAC 头部是以太网使用的头部,它包含了接收方和发送方的 MAC 地址等信息,我们可以通过 ARP 协议获取对方的 MAC 地址。

所以说,网络接口层主要为网络层提供「链路级别」传输的服务,负责在以太网、WiFi 这样的底层网络上发送原始数据包,工作在网卡这个层次,使用 MAC 地址来标识网络上的设备。

总结

综上所述,TCP/IP 网络通常是由上到下分成 4 层,分别是应用层,传输层,网络层和网络接口层

每一层的封装格式:

网络接口层的传输单位是帧(frame),IP 层的传输单位是包(packet),TCP 层的传输单位是段(segment),HTTP 的传输单位则是消息或报文(message)。但这些名词并没有什么本质的区分,可以统称为数据包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70626.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(done) openMP学习 (Day10: Tasks 原语)

url: https://dazuozcy.github.io/posts/introdution-to-openmp-intel/#19-%E6%8A%80%E8%83%BD%E8%AE%AD%E7%BB%83%E9%93%BE%E8%A1%A8%E5%92%8Copenmp 本章节内容仅提供引入,关于 task 更详细的细节请看 openMP 手册或者源材料 Day9 介绍了一个优化链表遍历的粗糙方…

《代码随想录第二十八天》——回溯算法理论基础、组合问题、组合总和III、电话号码的字母组合

《代码随想录第二十八天》——回溯算法理论基础、组合问题、组合总和III、电话号码的字母组合 本篇文章的所有内容仅基于C撰写。 1. 基础知识 1.1 概念 回溯是递归的副产品,它也是遍历树的一种方式,其本质是穷举。它并不高效,但是比暴力循…

群晖安装Gitea

安装Docker Docker运行Gitea 上传gitea包,下载地址:https://download.csdn.net/download/hmxm6/90360455 打开docker 点击印象,点击新增,从文件添加 点击启动 可根据情况,进行高级设置,没有就下一步 点击应…

SAP ABAP调用DeepSeek API大模型接口

搜索了一下DeepSeek,发现有人已经实现了SAP的对接, 不登录网页,SAP如何使用DeepSeek快速编程,ABAP起飞啦~ 按照对应的注册流程和方法。总算做出了第一个能够直连DeepSeek的API abap程序。 效果不错。 report ZTOOL_ABAP_CALL_D…

verilog练习:i2c slave 模块设计

文章目录 前言1. 结构2.代码2.1 iic_slave.v2.2 sync.v2.3 wr_fsm.v2.3.1 状态机状态解释 2.4 ram.v 3. 波形展示4. 建议5. 资料总结 前言 首先就不啰嗦iic协议了,网上有不少资料都是叙述此协议的。 下面将是我本次设计的一些局部设计汇总,如果对读者有…

活动预告 |【Part 1】Microsoft 安全在线技术公开课:通过扩展检测和响应抵御威胁

课程介绍 通过 Microsoft Learn 免费参加 Microsoft 安全在线技术公开课,掌握创造新机遇所需的技能,加快对 Microsoft Cloud 技术的了解。参加我们举办的“通过扩展检测和响应抵御威胁”技术公开课活动,了解如何更好地在 Microsoft 365 Defen…

【电机控制器】STC8H1K芯片——低功耗

【电机控制器】STC8H1K芯片——低功耗 文章目录 [TOC](文章目录) 前言一、芯片手册说明二、IDLE模式三、PD模式四、PD模式唤醒五、实验验证1.接线2.视频(待填) 六、参考资料总结 前言 使用工具: 1.STC仿真器烧录器 提示:以下是本…

校园网规划方案

个人博客站—运维鹿: http://www.kervin24.top CSDN博客—做个超努力的小奚: https://blog.csdn.net/qq_52914969?typeblog 本课程设计参考学习计算机网络 思科Cisco Packet Tracer仿真实验_哔哩哔哩_bilibili, 文章和pkg详见个人博客站: http://www.kervin24.to…

用 DeepSeek + Kimi 自动做 PPT,效率起飞

以下是使用 DeepSeek Kimi 自动做 PPT 的详细操作步骤: 利用 DeepSeek 生成 PPT 内容: 访问 DeepSeek 官网,完成注册/登录后进入对话界面。输入指令,例如“请用 Markdown 格式生成一份关于[具体主题]的 PPT 大纲,需包…

【Matlab优化算法-第14期】基于智能优化算法的VMD信号去噪项目实践

基于智能优化算法的VMD信号去噪项目实践 一、前言 在信号处理领域,噪声去除是一个关键问题,尤其是在处理含有高斯白噪声的复杂信号时。变分模态分解(VMD)作为一种新兴的信号分解方法,因其能够自适应地分解信号而受到…

8.JVM-方法区

前言 这次所讲述的是运行时数据区的最后一个部分 从线程共享与否的角度来看 ThreadLocal:如何保证多个线程在并发环境下的安全性?典型应用就是数据库连接管理,以及会话管理 栈、堆、方法区的交互关系 下面就涉及了对象的访问定位 Person&a…

大模型训练(7):集合通信与通信原语

0 背景 分布式训练过程中设计到许多通信上的操作, 每个操作有其不同的术语并且有所区别,这里将其用简单的例子和描述总结一下,方便理解。 集合通信(Collective Communications)是一个进程组的所有进程都参与的全局通…

全程Kali linux---CTFshow misc入门(38-50)

第三十八题: ctfshow{48b722b570c603ef58cc0b83bbf7680d} 第三十九题: 37换成1,36换成0,就得到长度为287的二进制字符串,因为不能被8整除所以,考虑每7位转换一个字符,得到flag。 ctfshow{5281…

C++Primer学习(2.2)

2.2 变量 变量提供一个具名的、可供程序操作的存储空间。C中的每个变量都有其数据类型,数据类型决定着变量所占内存空间的大小和布局方式、该空间能存储的值的范围,以及变量能参与的运算。对C程序员来说,“变量(variable)”和“对象(object)”一般可以互换使用。 术…

Maven 安装配置(完整教程)

文章目录 一、Maven 简介二、下载 Maven三、配置 Maven3.1 配置环境变量3.2 Maven 配置3.3 IDEA 配置 四、结语 一、Maven 简介 Maven 是一个基于项目对象模型(POM)的项目管理和自动化构建工具。它主要服务于 Java 平台,但也支持其他编程语言…

基于Java的远程视频会议系统(源码+系统+论文)

第一章 概述 1.1 本课题的研究背景 随着人们对视频和音频信息的需求愈来愈强烈,追求远距离的视音频的同步交互成为新的时尚。近些年来,依托计算机技术、通信技术和网络条件的发展,集音频、视频、图像、文字、数据为一体的多媒体信息&#xff…

DeepSeek为何能爆火

摘要:近年来,DeepSeek作为一款新兴的社交媒体应用,迅速在年轻人群体中走红,引发了广泛关注。本文旨在探讨DeepSeek为何能在短时间内爆火,从而为我国社交媒体的发展提供参考。首先,通过文献分析,…

数据分析如何做EDA

探索性数据分析(EDA,Exploratory Data Analysis)是数据分析过程中至关重要的一步,其目的是通过统计和可视化技术对数据进行初步分析,从而揭示数据的潜在模式、特征和异常值,并为后续的数据预处理、特征工程…

Unity-Mirror网络框架-从入门到精通之Discovery示例

文章目录 前言Discovery示例NetworkDiscoveryNetworkDiscoveryHUDServerRequestServerResponse最后前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Un…

哈佛大学“零点项目”(Project Zero)简介

哈佛大学“零点项目”(Project Zero)简介 起源与背景 “零点项目”(Project Zero)由美国哲学家纳尔逊古德曼(Nelson Goodman)于1967年在哈佛大学教育研究院创立。名称源于“从零开始研究艺术教育”的理念&…