【Matlab优化算法-第14期】基于智能优化算法的VMD信号去噪项目实践

基于智能优化算法的VMD信号去噪项目实践

一、前言

在信号处理领域,噪声去除是一个关键问题,尤其是在处理含有高斯白噪声的复杂信号时。变分模态分解(VMD)作为一种新兴的信号分解方法,因其能够自适应地分解信号而受到广泛关注。然而,VMD的性能在很大程度上依赖于其参数的选择。本文将介绍如何使用智能优化算法(如粒子群优化算法,PSO)来优化VMD的参数,从而提高信号去噪的效果。

二、项目背景

在许多实际应用中,信号往往被噪声污染,这会影响信号的后续处理和分析。例如,在通信、医疗电子和地震信号处理等领域,信号去噪是提高信号质量、增强信号特征和提高系统性能的关键步骤。传统的去噪方法,如小波变换和经验模态分解(EMD),虽然在一定程度上有效,但在处理复杂信号时可能会遇到一些问题,如模态混叠和边界效应。VMD作为一种改进的信号分解方法,通过将信号分解为多个模态分量(IMFs),能够更好地处理非平稳信号。然而,VMD的性能在很大程度上依赖于其参数的选择,如惩罚参数α和模态分量的数量K。因此,优化这些参数对于提高VMD的去噪效果至关重要。

三、项目目标

本项目的目标是通过智能优化算法(如粒子群优化算法,PSO,本文使用的是改进的IBKA算法)优化VMD的参数,以提高信号去噪的效果。具体目标包括:
使用智能优化算法搜索最优的VMD参数(α和K)。
通过动态时间规整(DTW)筛选与原始信号动态特性相似的模态分量,剔除噪声分量。
重构信号并评估去噪效果,使用信噪比(SNR)、均方误差(MSE)和频谱分析等指标。
与其他优化算法(如BKA、IBKA和北方苍鹰算法)进行比较,验证所提方法的优越性。

四、实验步骤

(一)信号生成

信号参数:生成一个包含三个正弦信号的合成信号,频率分别为5 Hz、50 Hz和125 Hz,并叠加信噪比为5 dB的高斯白噪声。
信号表达式:
X(t)=10sin(2πf1​t)+3sin(2πf2​t)+1.5sin(2πf3​t)+噪声
其中,f1​=5 Hz, f2​=50 Hz, f3​=125 Hz,信噪比为5 dB。

(二)VMD参数优化

优化算法选择:使用粒子群优化算法(PSO)搜索最优的VMD参数(α和K)。
适应度函数:选择合适的适应度函数以提高优化算法的性能,如搜索性能和收敛性。
优化过程:通过优化算法搜索最优参数,输出K个模态分量(IMFs)。

(三)DTW筛选

计算DTW距离:对每个模态分量和原始信号计算动态时间规整(DTW)距离。
设定阈值筛选:保留DTW距离较小的模态分量,剔除噪声分量。
阈值选择:使用动态阈值(如按IMF距离分布的均值和标准差设定)以减少人工设定带来的误差。

(四)信号重构

重构信号:将筛选后的模态分量进行叠加,得到重构信号。
结果评估:使用信噪比(SNR)、均方误差(MSE)和频谱分析等指标评估去噪效果。

(五)结果比较

与其他优化算法比较:使用相同的仿真信号和适应度函数,结合不同的优化算法(如BKA、IBKA和北方苍鹰算法)进行比较。
性能指标对比:对比降噪后信号的SNR、MSE和MAE,绘制对比图。

五、实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(一)信噪比提升

通过优化VMD参数并结合DTW筛选,重构信号的信噪比(SNR)明显提升,表明去噪效果显著。

(二)均方误差降低

重构信号的均方误差(MSE)明显降低,进一步验证了去噪方法的有效性。

(三)频谱特性

重构信号的频谱特性与原始信号高度一致,主要频率成分得以保留,表明去噪过程未对信号的主要特征造成显著影响。

(四)优化算法性能

通过绘制优化算法的收敛曲线,可以直观地展示不同适应度函数对优化算法性能的影响。实验结果表明,所选适应度函数能够有效提高优化算法的收敛速度和稳定性。

(五)与其他算法的比较

与其他优化算法(如BKA、IBKA和北方苍鹰算法)结合VMD进行比较,结果表明,使用PSO优化的VMD在降噪效果上具有明显优势,SNR更高,MSE更低。

六、结论

本项目通过智能优化算法(PSO)优化VMD的参数,并结合DTW筛选有效模态分量,成功实现了信号的高效去噪。实验结果表明,该方法能够显著提高信噪比,降低均方误差,并且保留了信号的主要频谱特性。此外,与其他优化算法的比较进一步验证了所提方法的优越性。未来,可以进一步探索其他智能优化算法在VMD参数优化中的应用,并将其应用于更多实际信号处理场景中。

七、代码实现

以下是使用MATLAB实现的代码片段:

%% 主函数clc
close all
clear all
dbstop if error
%% 添加路径
addpath(genpath(pwd))%% 读取数据%% 选取数据
filename='1.txt';
data0=importdata(filename);[t,data,X]=simData(5);% step=100;%% 降采样的间隔  每隔多少点取一个点
% data=data0.data(1:step:end,3)*0.12;
% t=data0.data(1:step:end,2)/500;
figure
hold on
plot(t,X,'g','LineWidth',2,'DisplayName','原始数据')
plot(t,data,'r','LineWidth',2,'DisplayName','原始数据+噪声')xlabel('时间(s)','FontSize',12,'FontWeight','bold','FontName','楷体')
ylabel('电压','FontSize',12,'FontWeight','bold','FontName','楷体')
grid on
box on
legend('FontName','楷体')
%% 根据IBKA-SVM得到的最优参数 进行分解
best_alpha=3500;
best_K=5;
[u, u_hat, omega] = vmd(data,'PenaltyFactor', best_alpha,'NumIMF',best_K);figure
Dt=zeros(best_K,1);
for i=1:best_Ksubplot(ceil(best_K/2),2,i)plot(t,u(:,i))ylabel(['imf' num2str(i)])grid onbox onif i==best_K-1xlabel('时间')end%% 计算DTW距离Dt(i)=dtwfunction(u(:,i),data,0);
end
sgtitle('VMD最优分解结果')
xlabel('时间')figure
plot(Dt,'k-*','DisplayName','DTW距离')
xlabel('imf序号')
ylabel('dtw距离')
hold on
thre=max(min(Dt),mean(Dt)-1*std(Dt));plot(thre*ones(size(Dt)),'r-','DisplayName','动态阈值')
legend
idx=find(Dt<=thre);
% max_idx=find(Dt==max(Dt));
% idx=1:best_K;
% 
% idx=setdiff(idx,max_idx);
% data_new=sum(u(:,2:end),2);
data_new=sum(u(:,idx),2);figure
hold on
plot(t,X,'g','LineWidth',2,'DisplayName','原始数据')
plot(t,data_new,'b','LineWidth',2,'DisplayName','去噪后数据')
xlabel('时间(s)','FontSize',12,'FontWeight','bold','FontName','楷体')
ylabel('电压','FontSize',12,'FontWeight','bold','FontName','楷体')
grid on
box on
legend('FontName','楷体')%% 计算指标
snr=10*log(sum(X.^2)/sum((X-data).^2));mse=mean((X-data).^2);mae=mean(abs(X-data));fprintf('原始信号:snr=%0.4f,mse=%0.4f,mae=%0.4f\n',snr,mse,mae)snr=10*log(sum(X.^2)/sum((X-data_new').^2));mse=mean((X-data_new').^2);mae=mean(abs(X-data_new'));fprintf('IBKA-VMD-DWT降噪后信号:snr=%0.4f,mse=%0.4f,mae=%0.4f\n',snr,mse,mae)

八、参考文献

《基于优化 VMD 与改进加权函数的管道泄漏定位方法研究》

希望以上内容能够满足你的需求。如果有任何进一步的修改意见或补充内容,欢迎随时告诉我。

本人擅长各类优化模型的建模和求解,具有近400个优化项目的建模仿真经验,擅长模型构建,算法设计,算法实现和算法改进。累计指导各类建模/算法比赛和SCI写作超过100人次。
本人长期提供: ①源码分享(近1000个本人手写项目) ②辅导答疑(远程桌面一对一语音+文档指导,可以录屏反复观看)
③项目定制(根据您的现实问题,针对性建模求解,提供完整方案+代码实现)

长期在线,欢迎咨询,一般晚上看消息!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70602.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

8.JVM-方法区

前言 这次所讲述的是运行时数据区的最后一个部分 从线程共享与否的角度来看 ThreadLocal&#xff1a;如何保证多个线程在并发环境下的安全性&#xff1f;典型应用就是数据库连接管理&#xff0c;以及会话管理 栈、堆、方法区的交互关系 下面就涉及了对象的访问定位 Person&a…

大模型训练(7):集合通信与通信原语

0 背景 分布式训练过程中设计到许多通信上的操作&#xff0c; 每个操作有其不同的术语并且有所区别&#xff0c;这里将其用简单的例子和描述总结一下&#xff0c;方便理解。 集合通信&#xff08;Collective Communications&#xff09;是一个进程组的所有进程都参与的全局通…

全程Kali linux---CTFshow misc入门(38-50)

第三十八题&#xff1a; ctfshow{48b722b570c603ef58cc0b83bbf7680d} 第三十九题&#xff1a; 37换成1&#xff0c;36换成0&#xff0c;就得到长度为287的二进制字符串&#xff0c;因为不能被8整除所以&#xff0c;考虑每7位转换一个字符&#xff0c;得到flag。 ctfshow{5281…

C++Primer学习(2.2)

2.2 变量 变量提供一个具名的、可供程序操作的存储空间。C中的每个变量都有其数据类型,数据类型决定着变量所占内存空间的大小和布局方式、该空间能存储的值的范围&#xff0c;以及变量能参与的运算。对C程序员来说,“变量(variable)”和“对象(object)”一般可以互换使用。 术…

Maven 安装配置(完整教程)

文章目录 一、Maven 简介二、下载 Maven三、配置 Maven3.1 配置环境变量3.2 Maven 配置3.3 IDEA 配置 四、结语 一、Maven 简介 Maven 是一个基于项目对象模型&#xff08;POM&#xff09;的项目管理和自动化构建工具。它主要服务于 Java 平台&#xff0c;但也支持其他编程语言…

基于Java的远程视频会议系统(源码+系统+论文)

第一章 概述 1.1 本课题的研究背景 随着人们对视频和音频信息的需求愈来愈强烈&#xff0c;追求远距离的视音频的同步交互成为新的时尚。近些年来&#xff0c;依托计算机技术、通信技术和网络条件的发展&#xff0c;集音频、视频、图像、文字、数据为一体的多媒体信息&#xff…

DeepSeek为何能爆火

摘要&#xff1a;近年来&#xff0c;DeepSeek作为一款新兴的社交媒体应用&#xff0c;迅速在年轻人群体中走红&#xff0c;引发了广泛关注。本文旨在探讨DeepSeek为何能在短时间内爆火&#xff0c;从而为我国社交媒体的发展提供参考。首先&#xff0c;通过文献分析&#xff0c;…

数据分析如何做EDA

探索性数据分析&#xff08;EDA&#xff0c;Exploratory Data Analysis&#xff09;是数据分析过程中至关重要的一步&#xff0c;其目的是通过统计和可视化技术对数据进行初步分析&#xff0c;从而揭示数据的潜在模式、特征和异常值&#xff0c;并为后续的数据预处理、特征工程…

Unity-Mirror网络框架-从入门到精通之Discovery示例

文章目录 前言Discovery示例NetworkDiscoveryNetworkDiscoveryHUDServerRequestServerResponse最后前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Un…

哈佛大学“零点项目”(Project Zero)简介

哈佛大学“零点项目”&#xff08;Project Zero&#xff09;简介 起源与背景 “零点项目”&#xff08;Project Zero&#xff09;由美国哲学家纳尔逊古德曼&#xff08;Nelson Goodman&#xff09;于1967年在哈佛大学教育研究院创立。名称源于“从零开始研究艺术教育”的理念&…

【机器学习】数据预处理之scikit-learn的Scaler与自定义Scaler类进行数据归一化

scikit-learn的Scaler数据归一化 一、摘要二、训练数据集和测试数据集的归一化处理原则三、scikit-learn中的Scalar类及示例四、自定义StandardScaler类进行数据归一化处理五、小结 一、摘要 本文主要介绍了scikit-learn中Scaler的使用方法&#xff0c;特别强调了数据归一化在…

MySQL视图索引操作

创建学生表&#xff1b; mysql> create table Student(-> Sno int primary key auto_increment,-> Sname varchar(30) not null unique,-> Ssex char(2) check (Ssex男 or Ssex女) not null,-> Sage int not null,-> Sdept varchar(10) default 计算机 not …

知识库升级新思路:用生成式AI打造智能知识助手

在当今信息爆炸的时代&#xff0c;企业和组织面临着海量数据的处理和管理挑战。知识库管理系统&#xff08;Knowledge Base Management System, KBMS&#xff09;作为一种有效的信息管理工具&#xff0c;帮助企业存储、组织和检索知识。然而&#xff0c;传统的知识库系统往往依…

Python 文字识别OCR

一.引言 文字识别&#xff0c;也称为光学字符识别&#xff08;Optical Character Recognition, OCR&#xff09;&#xff0c;是一种将不同形式的文档&#xff08;如扫描的纸质文档、PDF文件或数字相机拍摄的图片&#xff09;中的文字转换成可编辑和可搜索的数据的技术。随着技…

ximalaya(三) playUriList值解密--webpack

本文主要介绍解密音频播放url参数。 本文仅代表个人理解&#xff0c;如有其他建议可在评论区沟通。 声明 仅仅记录一下自己的学习方法&#xff0c;不作为其他参考、更不作为商业用途。如有侵犯请联系本人删除 目标地址&#xff1a;aHR0cHM6Ly93d3cueGltYWxheWEuY29tL3NvdW5k…

Linux之Http协议分析以及cookie和session

Linux之Http协议分析以及cookie和session 一.分析请求行与响应行1.1请求行1.1.1资源的URL路径1.1.2常见的方法1.2响应行 二.cookie和session2.1cookie2.2session 一.分析请求行与响应行 在我们简单了解了请求和响应的格式以及模拟实现了请求和响应后我们已经可以通过网页来访问…

【漫话机器学习系列】085.自助采样法(Bootstrap Sampling)

自助采样法&#xff08;Bootstrap Sampling&#xff09; 1. 引言 在统计学和机器学习领域&#xff0c;数据的充足性直接影响模型的性能。然而&#xff0c;在许多实际场景中&#xff0c;我们可能无法获得足够的数据。为了解决这个问题&#xff0c;自助采样法&#xff08;Boots…

nodejs - vue 视频切片上传,本地正常,线上环境导致磁盘爆满bug

nodejs 视频切片上传&#xff0c;本地正常&#xff0c;线上环境导致磁盘爆满bug 原因&#xff1a; 然后在每隔一分钟执行du -sh ls &#xff0c;发现文件变得越来越大&#xff0c;即文件下的mp4文件越来越大 最后导致磁盘直接爆满 排查原因 1、尝试将m3u8文件夹下的所有视…

公司配置内网穿透方法笔记

一、目的 公司内部有局域网&#xff0c;局域网上有ftp服务器&#xff0c;有windows桌面服务器&#xff1b; 在内网环境下&#xff0c;是可以访问ftp服务器以及用远程桌面登录windows桌面服务器的&#xff1b; 现在想居家办公时&#xff0c;也能访问到公司内网的ftp服务器和win…

ZU47DR 100G光纤 高性能板卡

简介 2347DR是一款最大可提供8路ADC接收和8路DAC发射通道的高性能板卡。板卡选用高性价比的Xilinx的Zynq UltraScale RFSoC系列中XCZU47DR-FFVE1156作为处理芯片&#xff08;管脚可以兼容XCZU48DR-FFVE1156&#xff0c;主要差别在有无FEC&#xff08;信道纠错编解码&#xff0…