从Transformer到世界模型:AGI核心架构演进

文章目录

    • 引言:架构革命推动AGI进化
    • 一、Transformer:重新定义序列建模
      • 1.1 注意力机制的革命性突破
      • 1.2 从NLP到跨模态演进
      • 1.3 规模扩展的黄金定律
    • 二、通向世界模型的关键跃迁
      • 2.1 从语言模型到认知架构
      • 2.2 世界模型的核心特征
      • 2.3 混合架构的突破
    • 三、构建世界模型的技术路径
      • 3.1 多模态统一表示
      • 3.2 分层时序建模
      • 3.3 基于物理的推理引擎
    • 四、技术挑战与突破方向
      • 4.1 核心挑战矩阵
      • 4.2 突破性技术方向
    • 五、AGI架构的未来图景
      • 5.1 认知架构的三层设计
      • 5.2 关键里程碑预测
    • 结语:站在新范式的前夜

在这里插入图片描述

引言:架构革命推动AGI进化

在通往通用人工智能(AGI)的道路上,算法架构的演进始终扮演着核心驱动力的角色。从2017年Transformer架构的横空出世,到近期世界模型(World Model)概念的突破性进展,我们正在见证一场静默但深刻的认知革命。这场革命不仅重新定义了神经网络的处理范式,更在本质上改变了AI系统理解世界的方式。

一、Transformer:重新定义序列建模

1.1 注意力机制的革命性突破

Transformer架构的核心创新在于其完全基于注意力机制的设计:

class MultiHeadAttention(nn.Module):def __init__(self, d_model, num_heads):super().__init__()self.d_model = d_modelself.num_heads = num_headsself.head_dim = d_model // num_heads# 线性变换矩阵self.W_q = nn.Linear(d_model, d_model)self.W_k = nn.Linear(d_model, d_model)self.W_v = nn.Linear(d_model, d_model)self.W_o = nn.Linear(d_model, d_model)def scaled_dot_product_attention(self, Q, K, V, mask=None):# 计算注意力得分attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim)# 应用softmaxattn_probs = F.softmax(attn_scores, dim=-1)# 与Value相乘output = torch.matmul(attn_probs, V)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70061.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度求索DeepSeek横空出世

真正的强者从来不是无所不能,而是尽我所能。多少有关输赢胜负的缠斗,都是直面本心的搏击。所有令人骄傲振奋的突破和成就,看似云淡风轻寥寥数语,背后都是数不尽的焚膏继晷、汗流浃背。每一次何去何从的困惑,都可能通向…

性能优化中的数据过滤优化

目录 以下是一些关于数据过滤优化的策略和方法 索引使用 避免全表扫描 使用分区 数据预处理 合理设计查询 利用缓存机制 数据库层面优化 系统中通常会有一些统计和分析的功能,以前我们主要针对结构化数据(关系型数据库存储)进行分析&a…

与本地Deepseek R1:14b的第一次交流

本地部署DS的方法,见:本地快速部署DeepSeek-R1模型——2025新年贺岁-CSDN博客 只有16GB内存且没有强大GPU的个人电脑,部署和运行14b参数的DS大模型已是天花板了。 运行模型 ollama run deepseek-r1:14b C:\Users\Administrator>ollama r…

Python 梯度下降法(六):Nadam Optimize

文章目录 Python 梯度下降法(六):Nadam Optimize一、数学原理1.1 介绍1.2 符号定义1.3 实现流程 二、代码实现2.1 函数代码2.2 总代码 三、优缺点3.1 优点3.2 缺点 四、相关链接 Python 梯度下降法(六):Nad…

【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)

羑悻的小杀马特.-CSDN博客羑悻的小杀马特.擅长C/C题海汇总,AI学习,c的不归之路,等方面的知识,羑悻的小杀马特.关注算法,c,c语言,青少年编程领域.https://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_8264829…

MySQL(Undo日志)

后面也会持续更新,学到新东西会在其中补充。 建议按顺序食用,欢迎批评或者交流! 缺什么东西欢迎评论!我都会及时修改的! 大部分截图和文章采用该书,谢谢这位大佬的文章,在这里真的很感谢让迷茫的…

全面剖析 XXE 漏洞:从原理到修复

目录 前言 XXE 漏洞概念 漏洞原理 XML 介绍 XML 结构语言以及语法 XML 结构 XML 语法规则 XML 实体引用 漏洞存在原因 产生条件 经典案例介绍分析 XXE 漏洞修复方案 结语 前言 网络安全领域暗藏危机,各类漏洞威胁着系统与数据安全。XXE 漏洞虽不常见&a…

初级数据结构:栈和队列

目录 一、栈 (一)、栈的定义 (二)、栈的功能 (三)、栈的实现 1.栈的初始化 2.动态扩容 3.压栈操作 4.出栈操作 5.获取栈顶元素 6.获取栈顶元素的有效个数 7.检查栈是否为空 8.栈的销毁 9.完整代码 二、队列 (一)、队列的定义 (二)、队列的功能 (三&#xff09…

登录认证(5):过滤器:Filter

统一拦截 上文我们提到(登录认证(4):令牌技术),现在大部分项目都使用JWT令牌来进行会话跟踪,来完成登录功能。有了JWT令牌可以标识用户的登录状态,但是完整的登录逻辑如图所示&…

Python 网络爬虫实战:从基础到高级爬取技术

📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 1. 引言 网络爬虫(Web Scraping)是一种自动化技术,利用程序从网页中提取数据,广泛…

MySQL锁类型(详解)

锁的分类图,如下: 锁操作类型划分 读锁 : 也称为共享锁 、英文用S表示。针对同一份数据,多个事务的读操作可以同时进行而不会互相影响,相互不阻塞的。 写锁 : 也称为排他锁 、英文用X表示。当前写操作没有完成前,它会…

93,【1】buuctf web [网鼎杯 2020 朱雀组]phpweb

进入靶场 页面一直在刷新 在 PHP 中,date() 函数是一个非常常用的处理日期和时间的函数,所以应该用到了 再看看警告的那句话 Warning: date(): It is not safe to rely on the systems timezone settings. You are *required* to use the date.timez…

51单片机 01 LED

一、点亮一个LED 在STC-ISP中单片机型号选择 STC89C52RC/LE52RC;如果没有找到hex文件(在objects文件夹下),在keil中options for target-output- 勾选 create hex file。 如果要修改编程 :重新编译-下载/编程-单片机重…

【Rust自学】19.2. 高级trait:关联类型、默认泛型参数和运算符重载、完全限定语法、supertrait和newtype

喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 19.2.1. 在trait定义中使用关联类型来指定占位类型 我们首先在第10章的10.3. trait Pt.1&a…

Elasticsearch:如何搜索含有复合词的语言

作者:来自 Elastic Peter Straer 复合词在文本分析和标记过程中给搜索引擎带来挑战,因为它们会掩盖词语成分之间的有意义的联系。连字分解器标记过滤器等工具可以通过解构复合词来帮助解决这些问题。 德语以其长复合词而闻名:Rindfleischetik…

web-SQL注入-CTFHub

前言 在众多的CTF平台当中,作者认为CTFHub对于初学者来说,是入门平台的不二之选。CTFHub通过自己独特的技能树模块,可以帮助初学者来快速入门。具体请看官方介绍:CTFHub。 作者更新了CTFHub系列,希望小伙伴们多多支持…

WPS动画:使图形平移、围绕某个顶点旋转一定角度

1、平移 案例三角形如下图,需求:该三角形的A点平移至原点 (1)在预想动画结束的位置绘制出图形 (2)点击选中原始图像,插入/动画/绘制自定义路径/直线 (3)十字星绘制的直线…

xmind使用教程

xmind使用教程 前言xmind版本信息“xmind使用教程”的xmind思维导图 前言 首先xmind是什么?XMind 是一款思维导图和头脑风暴工具,用于帮助用户组织和可视化思维、创意和信息。它允许用户通过图形化的方式来创建、整理和分享思维导图,可以用于…

KNIME:开源 AI 数据科学

KNIME(Konstanz Information Miner)是一款开源且功能强大的数据科学平台,由德国康斯坦茨大学的软件工程师团队开发,自2004年推出以来,广泛应用于数据分析、数据挖掘、机器学习和可视化等领域。以下是对KNIME的深度介绍…

2025年01月27日Github流行趋势

项目名称:onlook项目地址url:https://github.com/onlook-dev/onlook项目语言:TypeScript历史star数:5340今日star数:211项目维护者:Kitenite, drfarrell, iNerdStack, abhiroopc84, apps/dependabot项目简介…