FFmpeg rtmp推流直播

文章目录

  • rtmp协议
    • RTMP协议组成
    • RTMP的握手过程
    • RTMP流的创建
    • RTMP消息格式
    • Chunking(Message 分块)
  • rtmp服务器搭建
    • Nginx服务器
    • 配置Nginx服务器
  • librtmp库编译
  • 推流

rtmp协议

RTMP(Real Time Messaging Protocol)是由Adobe公司基于Flash Player播放器对应的音视频flv封装格式提出的一种,基于TCP的数据传输协议。本身具有稳定、兼容性强、高穿透的特点。常被应用于流媒体直播、点播等场景。常用于推流方(主播)的稳定传输需求。

RTMP协议组成

RTMP协议主要由以下三个部分组成:

  • 握手阶段: 在RTMP连接建立之初,客户端与服务器通过握手过程来确认双方的协议版本以及交换随机数等信息,握手成功后,双方将建立起稳定的连接。
  • 消息传输: 在握手成功之后,RTMP协议将音视频数据、命令消息等封装成消息进行传输。RTMP协议支持多种消息类型,包括音频、视频、数据消息、命令消息等。为保证消息的有序传输,RTMP还引入了流ID、消息ID等概念来对消息进行管理。
  • 块传输: RTMP协议采用分块传输机制来提高传输效率。将消息划分为一系列较小的块(chunks),每个块的大小可配置。这种分块传输机制可以降低延迟,提高实时性。

RTMP协议的工作原理可概括为以下几个步骤:

  1. 客户端与服务器建立TCP连接
  2. 双方通过握手过程确认协议版本及交换随机数等信息
  3. 客户端发送连接命令(connect)到服务器
  4. 服务器响应连接命令,返回连接结果
  5. 客户端与服务器建立流(stream)进行音视频数据传输
  6. 在传输过程中,双方可以发送控制命令,如播放、暂停等
  7. 当连接关闭时,双方结束消息传输并断开连接

RTMP的握手过程

在这里插入图片描述

RTMP流的创建

在这里插入图片描述

RTMP消息格式

RTMP数据单元(Message)是RTMP协议中用于封装音频、视频、命令和数据等信息的基本单位。其结构如图所示:RTMP的消息格式都是由消息头和消息体构成。
在这里插入图片描述
在RTMP Header中包含三个部分,基本头(Basic Header),消息头(Message Header)和扩展时间戳(Extended TimeStamp)其中消息头和扩展时间戳是可选的。
Basic Header包含了chunk stream ID(流通道id)和chunk type,chunk stream id一般被简写为CSID,用来唯一标识一个特定的流通道,chunk type决定了后面Message Header的格式。Basic Header的长度可能是1,2或4个字节,其中chunk type的长度是固定的(占2位,单位是bit),Basic Header是变长的,其长度取决于CSID的大小,在足够存储这两个字段的前提下,最好用尽量少的字节从而减少由于引入Header增加的数据量。
RTMP协议最多支持65597个用户定义chunk stream ID,范围为[3,65599],ID 0,1,2被协议规范直接使用,其中ID值0,1分别表示了Basic Header占用2个字节和4个字节:
ID值0:代表Basic Header占用2个字节,CSID在 [64,319]之间
ID值1:代表Basic Header占用4个字节,CSID在[64,65599]之间
ID值2:代表chunk是控制信息和一些命令信息
在这里插入图片描述

消息头(Message Header) 包含时间戳(TimeStamp),消息长度(MsgLength),消息类型(TypeID)和流ID(SteamID)

它们都是可选的。常用的消息类型如下表所示:
在这里插入图片描述
扩展时间戳 是可选的。当时间戳过大,TimeStamp无法表示时才会使用。即TimeStamp 的值为0xFFFFFF

Chunking(Message 分块)

RTMP在收发数据的时候并不是以Message为单位的,而是把Message拆分成Chunk发送,而且必须在一个Chunk发送完成之后才能开始发送下一个Chunk。每个Chunk中带有MessageID(Chunk Stream ID)代表属于哪个Message,接受端也会按照这个id来将chunk组装成Message。

为什么RTMP要将Message拆分成不同的Chunk呢?通过拆分,数据量较大的Message可以被拆分成较小的“Message”,这样就可以避免优先级低的消息持续发送阻塞优先级高的数据,比如在视频的传输过程中,会包括视频帧,音频帧和RTMP控制信息,如果持续发送音频数据或者控制数据的话可能就会造成视频帧的阻塞,然后就会造成看视频时最烦人的卡顿现象。同时对于数据量较大的Message,可以通过对Chunk Header的字段来压缩信息,从而减少信息的传输量。

Chunk的默认大小是128字节,在传输过程中,通过一个叫做Set Chunk Size的控制信息可以设置Chunk数据量的最大值,在发送端和接受端会各自维护一个Chunk Size(srs流媒体服务器默认是60000),可以分别设置这个值来改变这一方发送的Chunk的最大值。大一点的Chunk减少了计算每个chunk的时间从而减少了CPU的占用率,但是它会占用更多的时间在发送上,尤其是在低带宽的网络情况下,很可能会阻塞后面更重要信息的传输。小一点的Chunk可以减少这种阻塞问题,但小的Chunk会引起过多额外的信息(Chunk中的Header),少量多次的传输也可能会造成发送的间断导致不能充分利用高带宽的优势,因此并不适合在高比特率的流中传输。在实际发送时应对要发送的数据用不同的Chunk Size去尝试,通过抓包分析等手段得出合适的Chunk大小,并且在传输过程中可以根据当前的带宽信息和实际信息的大小动态调Chunk的大小,从而尽量提高CPU的利用率并减少信息的阻塞机率。

rtmp服务器搭建

Nginx服务器

Nginx(engine x)是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务。Nginx是由伊戈尔·塞索耶夫为俄罗斯访问量第二的Rambler.ru站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、简单的配置文件和低系统资源的消耗而闻名。2011年6月1日,nignx 1.0.4发布。

其特点是占有内存少,并发能力强,事实上nginx的并发能力在同类型的网页服务器中表现较好,中国大陆使用nginx网站用户有:百度、京东、新浪、网易、腾讯、淘宝等。

Nginx是高性能的HTTP和反向代理的web服务器,处理高并发能力是十分强大的,能经受高负载的考验,有报告表明能支持高达50,000个并发连接数。

Nginx支持热部署,启动简单,可以做到7*24小时不间断运行,几个月都不需要重新启动。

Windows平台下要使用特殊的Nginx版本:
Nginx服务器下载地址:http://nginx-win.ecsds.eu/download/ 选择nginx 1.7.11.3 Gryphon.zip下载

想要推拉流还需要下载一个rtmp模块
Nginx的rtmp模块下载地址:https://github.com/arut/nginx-rtmp-module/

配置Nginx服务器

  1. 解压Nginx的压缩包并打开
    在这里插入图片描述
  2. 将下载好的rtmp模块解压,放到该目录下
    在这里插入图片描述
  3. 进入conf目录,打开Nginx配置文件nginx-win.conf
    在这里插入图片描述
    4.在该文件中添加如下内容
rtmp {server {listen 1935;#监听端口,若被占用,可以更改chunk_size 4000;#上传flv文件块儿的大小application live { #创建一个叫live的应用live on;#开启live的应用allow publish 127.0.0.1;#allow play all;}}
}

在这里插入图片描述
5. 启动Nginx服务器
进入Nginx.exe所在目录
在这里插入图片描述
6. 使用命令行打开
在这里插入图片描述
常用命令如下

nginx.exe -c conf\nginx-win.conf
nginx.exe -s stop    //快速终止服务器,可能不保存相关信息
nginx.exe -s quit    //完整有序停止服务器,保存相关信息
nginx.exe -s reload  //重新载入Nginx,当配置信息修改,需要重新载入这些配置时使用此命令

在这里插入图片描述
执行后有个光标在那闪,nginx就启动成功了
7. 测试服务器是否是正常的
拉流
打开电脑上的vlc,没有的话去下载一个
在这里插入图片描述
点媒体>网络串流
输入网络填 rtmp://127.0.0.1/live/room
在这里插入图片描述
推流
8. 打开电脑上的obs,没有的话去下载一个
在这里插入图片描述
9. 点左下角+添加场景,然后点中间的+点显示器采集,点确定,选择主显示器。点确定

在这里插入图片描述
10. 点设置>直播>服务>自定义
在这里插入图片描述
11. 直播成功
在这里插入图片描述

librtmp库编译

librtmp库编译

推流

flv构成在框架简介那篇有介绍

推流代码用vs2022跑的,代替了obs的工作

#define _CRT_SECURE_NO_WARNINGS#include <iostream>
#include <WinSock2.h>
extern "C" {
#include <rtmp.h>
}
#pragma comment(lib, "ws2_32.lib")bool openFLV(CONST char* filename, FILE** file)//打开FLV文件
{*file = fopen(filename, "rb");//打开文件if (!*file){std::cout << "打开文件失败" << std::endl;return false;}fseek(*file, 9, SEEK_SET);//跳过FLV头fseek(*file, 4, SEEK_CUR);//跳过PreviousTagSize,定位到当前Tagreturn true;
}
int readFLV(FILE* file, RTMPPacket** packet)
{char tag[11] = "";if (fread(tag, 1, 11, file) != 11)//读取11个字节return 0;uint32_t dataSize = (tag[1] << 16 & 0xFF0000) | (tag[2] << 8 & 0xFF00) | (tag[3] & 0xFF);;//获取数据大小if (tag[0] != 0x08 && tag[0] != 0x09)//判断是否是音频或视频Tag{fseek(file, dataSize + 4, SEEK_CUR);//跳过当前Tag,和下一个PreviousTagSize,定位到下一个Tagreturn 2;}int ret = fread((*packet)->m_body, 1, dataSize, file);//读取数据if (ret != dataSize)//判断是否读取成功return 0;(*packet)->m_headerType = RTMP_PACKET_SIZE_LARGE;//设置包大小(*packet)->m_nBodySize = dataSize;//设置包大小uint32_t timestamp = (tag[4] << 16 & 0xFF0000) | (tag[5] << 8 & 0xFF00) | (tag[6] & 0xFF);//获取时间戳(*packet)->m_nTimeStamp = timestamp;//设置时间戳(*packet)->m_packetType = tag[0];//设置包类型std::cout << "read " << dataSize << " bytes, timestamp: " << timestamp << std::endl;fseek(file, 4, SEEK_CUR);//跳过PreviousTagSizereturn 1;
}int main()
{WSADATA wsaData;if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)return -1;RTMP* r = RTMP_Alloc();//分配内存RTMP_Init(r);//初始化RTMP_SetupURL(r, (char*)"rtmp://localhost/live/stream");//设置URL	RTMP_EnableWrite(r);//启用写权限if (!RTMP_Connect(r, NULL) || !RTMP_ConnectStream(r, 0))//连接return -1;RTMPPacket* packet = new RTMPPacket;//分配内存RTMPPacket_Alloc(packet, 1024 * 1024);//分配内存RTMPPacket_Reset(packet);//重置packet->m_hasAbsTimestamp = 0;//设置时间戳packet->m_nChannel = 0x04;//设置通道packet->m_nInfoField2 = r->m_stream_id;//设置流IDFILE* file;if (!openFLV("source/video-60fps.flv", &file))//打开FLV文件return -1;int ret = 0;uint32_t ts = 0;while (true){ret = readFLV(file, &packet);//读取FLV文件if (ret == 0)//读取失败break;if (ret == 2)//读取成功,但不是音频或视频Tagcontinue;if (!RTMP_IsConnected(r))//判断是否连接成功break;if (ts < packet->m_nTimeStamp)//判断是否需要等待Sleep(packet->m_nTimeStamp - ts);if (!RTMP_SendPacket(r, packet, true))//发送包break;ts = packet->m_nTimeStamp;//更新时间戳}std::cout << "推流结束" << std::endl;fclose(file);//关闭文件RTMPPacket_Free(packet);//释放内存RTMP_Close(r);//关闭连接RTMP_Free(r);//释放内存WSACleanup();//清理return 0;
}
}

测试
1.启动nignx
在这里插入图片描述

2.打开vlc,配置上面代码中设置的url地址
在这里插入图片描述
3. 运行上面写的代码
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69723.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker搭建redis集群(三主三从)

本篇文章不包含理论解释&#xff0c;直接开始集群&#xff08;三主三从&#xff09;搭建 环境 centos7 docker 26.1.4 redis latest &#xff08;7.4.2&#xff09; 服务器搭建以及环境配置 请查看本系列前几篇博客 默认已搭建好三个虚拟机并安装配置好docker 相关博客&#xf…

接口使用实例(2)

大家好&#xff0c;今天我们来解答一下昨天留下的一个问题&#xff0c;并且继续来看一些接口使用实例。 通过String类中重写的方法compareTo来实现我们的比较name的需求&#xff1a; 2,用Comparator接口来实现类的比较(比较器) 了解即可&#xff0c;以后会详细讲。 知识点:C…

基于Springboot的社区药房管理系统

博主介绍&#xff1a;java高级开发&#xff0c;从事互联网行业多年&#xff0c;熟悉各种主流语言&#xff0c;精通java、python、php、爬虫、web开发&#xff0c;已经做了多年的设计程序开发&#xff0c;开发过上千套设计程序&#xff0c;没有什么华丽的语言&#xff0c;只有实…

vue框架技术相关概述以及前端框架整合

vue框架技术概述及前端框架整合 1 node.js 介绍&#xff1a;什么是node.js Node.js就是运行在服务端的JavaScript。 Node.js是一个事件驱动I/O服务端JavaScript环境&#xff0c;基于Google的V8引擎。 作用 1 运行java需要安装JDK&#xff0c;而Node.js是JavaScript的运行环…

MATLAB的数据类型和各类数据类型转化示例

一、MATLAB的数据类型 在MATLAB中 &#xff0c;数据类型是非常重要的概念&#xff0c;因为它们决定了如何存储和操作数据。MATLAB支持数值型、字符型、字符串型、逻辑型、结构体、单元数组、数组和矩阵等多种数据类型。MATLAB 是一种动态类型语言&#xff0c;这意味着变量的数…

密码强度验证代码解析:C语言实现与细节剖析

在日常的应用开发中&#xff0c;密码强度验证是保障用户账户安全的重要环节。今天&#xff0c;我们就来深入分析一段用C语言编写的密码强度验证代码&#xff0c;看看它是如何实现对密码强度的多维度检测的。 代码整体结构 这段C语言代码主要实现了对输入密码的一系列规则验证&a…

蓝桥杯模拟算法:多项式输出

P1067 [NOIP2009 普及组] 多项式输出 - 洛谷 | 计算机科学教育新生态 这道题是一道模拟题&#xff0c;我们需要分情况讨论&#xff0c;我们需要做一下分类讨论 #include <iostream> #include <cstdlib> using namespace std;int main() {int n;cin >> n;for…

Pytorch框架从入门到精通

目录 一、Tensors 1.1 初始化一个Tensor 1&#xff09;赋值初始化 2&#xff09;从 NumPy 数组初始化 3&#xff09;从另一个张量 4&#xff09;使用随机值或常量值 1.2 Tensor 的属性 1.3 对 Tensor 的操作 1.3.1 总体介绍 1.3.2 索引和切片 1.3.3 算术运算 矩阵乘…

2024年数据记录

笔者注册时间超过98.06%的用户 CSDN 原力是衡量一个用户在 CSDN 的贡献和影响力的系统&#xff0c;笔者原力值超过99.99%的用户 其他年度数据

【已解决】黑马点评项目Redis版本替换过程的数据迁移

黑马点评项目Redis版本替换过程的数据迁移 【哭哭哭】附近商户中需要用到的GEO功能只在Redis 6.2以上版本生效 如果用的是老版本&#xff0c;美食/KTV的主页能正常返回&#xff0c;但无法显示内容 上次好不容易升到了5.0以上版本&#xff0c;现在又用不了了 Redis 6.2的windo…

Win11下帝国时代2无法启动解决方法

鼠标右键点图标&#xff0c;选择属性 点开始&#xff0c;输入启用和关闭

android主题设置为..DarkActionBar.Bridge时自定义DatePicker选中日期颜色

安卓自定义DatePicker选中日期颜色 背景&#xff1a;解决方案&#xff1a;方案一&#xff1a;方案二&#xff1a;实践效果&#xff1a; 背景&#xff1a; 最近在尝试用原生安卓实现仿element-ui表单校验功能&#xff0c;其中的的选择日期涉及到安卓DatePicker组件的使用&#…

SpringBoot 基础(Spring)

SpringBoot 基础&#xff08;Spring) Bean 注解标记和扫描 (IoC) 配置类概念 SpringBootConfiguration 或者 Configuration 注解标注的类就是配置类配置类本身也会加入 IoC 容器* Configuration public class configuration1 {}SpringBootConfiguration public class configur…

【数据结构与算法】九大排序算法实现详解

文章目录 Ⅰ. 排序的概念及其运用一、排序的概念二、常见的排序算法三、排序算法的接口四、测试算法接口附&#xff1a;Swap接口&#xff08;使用异或的方法实现&#xff09; Ⅱ. 排序算法的实现一、插入排序二、希尔排序( 缩小增量排序 )三、选择排序四、堆排序五、冒泡排序六…

Ansys Maxwell:采用对称性的双转子轴向磁通电机

轴向磁通电机因其功率密度高于相同重量的传统径向磁通电机而变得非常受欢迎&#xff0c;并且在电动汽车和航空应用中非常高效且具有成本效益。功率密度是输出功率与机器体积的比率。对于给定尺寸的机器&#xff0c;轴向磁通电机提供更大的扭矩和功率&#xff0c;或者对于给定的…

Leetcode:219

1&#xff0c;题目 2&#xff0c;思路 第一种就是简单的暴力比对当时过年没细想 第二种&#xff1a; 用Map的特性key唯一&#xff0c;把数组的值作为Map的key值我们每加载一个元素都会去判断这个元素在Map里面存在与否如果存在进行第二个判断条件abs(i-j)<k,条件 符合直接…

Hugging Face挑战DeepSeek,AI开源竞赛升级!

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.27 线性代数王国:矩阵分解实战指南

1.27 线性代数王国&#xff1a;矩阵分解实战指南 #mermaid-svg-JWrp2JAP9qkdS2A7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-JWrp2JAP9qkdS2A7 .error-icon{fill:#552222;}#mermaid-svg-JWrp2JAP9qkdS2A7 .erro…

巴塞尔问题详解:计算所有正整数平方的倒数之和

1 相关历史背景 巴塞尔问题&#xff08;Basel Problem&#xff09;是数学史上一个著名的问题&#xff0c;由意大利数学家皮埃特罗门戈利&#xff08;Pietro Mengoli&#xff09;在1644年首次提出。 但他未能解决&#xff0c;只能给出小数点后六位的近似解是1.644934&#xff0…

android 圆形弹窗摄像头开发踩坑——源码————未来之窗跨平台操作

一、飘窗刷脸&#xff0c;拍照采用飘窗 刷脸认证安卓接口采用飘窗具有在不干扰用户主要操作的前提下以醒目方式引导用户完成认证&#xff0c;且能灵活定制样式以提升用户体验和认证效率的优点 二、踩坑只有一个扇形 <?xml version"1.0" encoding"utf-8&quo…