单细胞-第四节 多样本数据分析,下游画图

文件在单细胞\5_GC_py\1_single_cell\2_plots.Rmd

1.细胞数量条形图

rm(list = ls())
library(Seurat)
load("seu.obj.Rdata")dat = as.data.frame(table(Idents(seu.obj)))
dat$label = paste(dat$Var1,dat$Freq,sep = ":")
head(dat)
library(ggplot2)
library(paletteer)
#View(palettes_d_names)
ggplot(dat,aes(x = Freq,fill = Var1,y = Var1))+scale_fill_paletteer_d("ggsci::category20_d3")+geom_bar(stat = "identity")+theme_bw()+geom_text(aes(x = 0,label = label),hjust = 0)+theme(axis.text.y = element_blank(),   # 隐藏纵坐标刻度文字axis.ticks.y = element_blank(),axis.title.y = element_blank())  # 隐藏纵坐标刻度线

在这里插入图片描述

2.细胞比例条形图

seu.obj$seurat_annotation = seu.obj@active.ident
ggplot(seu.obj@meta.data,aes(orig.ident,fill = seurat_annotation))+geom_bar(position = "fill", alpha = 0.9,width = 0.5)+scale_fill_paletteer_d("ggsci::category20_d3")+theme_classic()+coord_flip()+coord_fixed(ratio = 4) #纵轴长度是横轴的4

在这里插入图片描述

3.小提琴图

load("markers.Rdata")
library(tidyverse)
g = allmarkers %>% group_by(cluster) %>% top_n(1,wt = avg_log2FC) %>% pull(gene)m = as.matrix(seu.obj@assays$RNA@layers$data)
rownames(m) = Features(seu.obj)
colnames(m) = Cells(seu.obj)
vln.df <- m %>%t() %>%as.data.frame()%>%select(g) %>% rownames_to_column("CB") %>% mutate(cluster = seu.obj$seurat_annotation)%>%pivot_longer(cols = 2:(ncol(.)-1),#宽边长names_to = "gene",values_to = "exp") %>% mutate(gene = factor(gene,levels = g))
head(vln.df)
# 自定义颜色
library(paletteer)
my_color = paletteer_d(`"ggsci::category20_d3"`)
my_color = colorRampPalette(my_color)(length(unique(vln.df$cluster)))
# 画图
p1 <- ggplot(vln.df,aes(exp,cluster),color=factor(cluster))+geom_violin(aes(fill=cluster),scale = "width")+scale_fill_manual(values = my_color)+facet_grid(.~gene,scales = "free_y", switch = "x")+scale_x_continuous(expand = c(0,0),position = "top")+theme_bw()+theme(panel.grid = element_blank(),axis.title.x.top = element_blank(),#axis.ticks.x.bottom = element_blank(),axis.text.x.top= element_text(hjust = 1,vjust = NULL,color = "black",size = 7),#axis.title.y.left = element_blank(),#axis.ticks.y.left = element_blank(),#axis.text.y.left = element_blank(),legend.position = "none",panel.spacing.y = unit(0, "cm"),strip.text.y = element_text(angle=0,size = 14,hjust = 0),strip.background.y = element_blank())
p1

在这里插入图片描述

4.气泡图

g = allmarkers %>% group_by(cluster) %>% top_n(5,wt = avg_log2FC) %>% pull(gene) %>% unique()
DotPlot(seu.obj,features = g,cols = "RdYlBu")+RotatedAxis()

在这里插入图片描述

5.GC基因韦恩图

f = read.delim("gcgene.txt",header = F)
k = allmarkers$p_val_adj<0.05 & allmarkers$avg_log2FC>2
table(k)
g = intersect(allmarkers$gene[k],f$V1)
save(g,file = "g.Rdata")
library(tinyarray)
draw_venn(list(pyroptosis = f$V1,marker = unique(allmarkers$gene[k])),"")
ggsave("venn.png")

在这里插入图片描述

m = as.matrix(seu.obj@assays$RNA@layers$data)
rownames(m) = Features(seu.obj)
colnames(m) = Cells(seu.obj)
m = m[g,]
ac = data.frame(row.names = colnames(m),celltype = Idents(seu.obj))
library(dplyr)
ac = arrange(ac,celltype)
m = m[,rownames(ac)]
pheatmap::pheatmap(m,show_colnames = F,cluster_cols = F,cluster_rows = F,scale = "row",breaks = seq(-1.6,3,length.out = 100),annotation_col = ac)

在这里插入图片描述

6.差异焦亡基因富集分析

e = quick_enrich(g,destdir = tempdir())
e[[4]]+e[[3]]

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69676.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram

结论 Transformer 大于 传统的Seq2Seq 大于 LSTM 大于 RNN 大于 传统的n-gram n-gram VS Transformer 我们可以用一个 图书馆查询 的类比来解释它们的差异&#xff1a; 一、核心差异对比 维度n-gram 模型Transformer工作方式固定窗口的"近视观察员"全局关联的&q…

Julius AI 人工智能数据分析工具介绍

Julius AI 是一款由 Casera Labs 开发的人工智能数据分析工具&#xff0c;旨在通过自然语言交互和强大的算法能力&#xff0c;帮助用户快速分析和可视化复杂数据。这款工具特别适合没有数据科学背景的用户&#xff0c;使数据分析变得简单高效。 核心功能 自然语言交互&#x…

H3CNE-31-BFD

Bidirectional Forwarding Dection&#xff0c;双向转发检查 作用&#xff1a;毫秒级故障检查&#xff0c;通常结合三层协议&#xff08;静态路由、vrrp、ospf、BGP等&#xff09;&#xff0c;实现链路故障快速检查。 BFD配置示例 没有中间的SW&#xff0c;接口down&#xff…

2025最新版MySQL安装使用指南

2025最新版MySQL安装使用指南 The Installation and Usage Guide of the Latest Version of Oracle MySQL in 2025 By JacksonML 1. 获取MySQL 打开Chrome浏览器&#xff0c;访问官网链接&#xff1a;https://www.mysql.com/ &#xff0c;随即打开MySQL官网主页面&#xff…

[前端开发]记录国内快速cdn库,用于在线引入JavaScript第三方库

字节跳动的两个库,官网地址如下,搜索时优先找第一个,可用来链接axios,Boostrap等等第三方库 1. 字节跳动静态资源公共库 比如说搜索lodash,用于节流防抖的库,点击复制即可,一般是****.js或****.min.js这样的为后缀名的链接 点击复制即可, <script src"https://lf9-cd…

【云安全】云原生-K8S-搭建/安装/部署

一、准备3台虚拟机 务必保证3台是同样的操作系统&#xff01; 1、我这里原有1台centos7&#xff0c;为了节省资源和效率&#xff0c;打算通过“创建链接克隆”2台出来 2、克隆之前&#xff0c;先看一下是否存在k8s相关组件&#xff0c;或者docker相关组件 3、卸载原有的docker …

vim交换文件的作用

1.数据恢复&#xff1a;因为vim异常的退出&#xff0c;使用交换文件可以恢复之前的修改内容。 2.防止多人同时编辑&#xff1a;vim检测到交换文件的存在,会给出提示&#xff0c;以避免一个文件同时被多人编辑。 &#xff08;vim交换文件的工作原理&#xff1a;vim交换文件的工作…

【Block总结】OutlookAttention注意力,捕捉细节和局部特征|即插即用

论文信息 标题: VOLO: Vision Outlooker for Visual Recognition作者: Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, Shuicheng Yan代码链接: https://github.com/sail-sg/volo论文链接: https://arxiv.org/pdf/2106.13112 创新点 前景注意力机制: VOLO引入了一种称为“…

【Unity3D】实现横版2D游戏角色二段跳、蹬墙跳、扶墙下滑

目录 一、二段跳、蹬墙跳 二、扶墙下滑 一、二段跳、蹬墙跳 GitHub - prime31/CharacterController2D 下载工程后直接打开demo场景&#xff1a;DemoScene&#xff08;Unity 2019.4.0f1项目环境&#xff09; Player物体上的CharacterController2D&#xff0c;Mask添加Wall层…

premierePro 2022创建序列方式

概念 序列类似于画画的画布&#xff0c;类似ps的蒙层 一、新建序列方式 1、文件-新建-序列 2、直接将视频拖入时间轴&#xff08;没有序列时&#xff0c;如果有序列不行&#xff09; 3、右键右下角空白处 4、点击新建项按钮

九大服务构建高效 AIOps 平台,全面解决GenAI落地挑战

最近,DevOps运动的联合创始人Patrick Debois分享了他对AI平台与软件研发关系的深刻见解,让我们一起来探讨这个话题。 在AI的落地过程中,我们面临着两个主要难题: 引入AI编码工具后的开发者角色转变:随着像GitHub Copilot这样的AI工具的普及,工程师的角色正在发生深刻变革…

Golang :用Redis构建高效灵活的应用程序

在当前的应用程序开发中&#xff0c;高效的数据存储和检索的必要性已经变得至关重要。Redis是一个快速的、开源的、内存中的数据结构存储&#xff0c;为各种应用场景提供了可靠的解决方案。在这个完整的指南中&#xff0c;我们将学习什么是Redis&#xff0c;通过Docker Compose…

对顾客行为的数据分析:融入2+1链动模式、AI智能名片与S2B2C商城小程序的新视角

摘要&#xff1a;随着互联网技术的飞速发展&#xff0c;企业与顾客之间的交互方式变得日益多样化&#xff0c;移动设备、社交媒体、门店、电子商务网站等交互点应运而生。这些交互点不仅为顾客提供了便捷的服务体验&#xff0c;同时也为企业积累了大量的顾客行为数据。本文旨在…

毕业设计--具有车流量检测功能的智能交通灯设计

摘要&#xff1a; 随着21世纪机动车保有量的持续增加&#xff0c;城市交通拥堵已成为一个日益严重的问题。传统的固定绿灯时长方案导致了大量的时间浪费和交通拥堵。为解决这一问题&#xff0c;本文设计了一款智能交通灯系统&#xff0c;利用车流量检测功能和先进的算法实现了…

算法题(51):删除链表的倒数第N个节点

审题&#xff1a; 需要我们找到倒数第n个节点&#xff0c;并把他从链表中删除&#xff0c;然后把新的链表的头结点返回 思路&#xff1a; 该题的唯一难点就是如何找到单链表的倒数第n个节点 方法一&#xff1a;直接法 我们可以遍历一次单链表&#xff0c;然后把链表的总长度求出…

Ansible自动化运维实战--yaml的使用和配置(7/8)

文章目录 一、YAML 基本语法1.1. 缩进1.2. 注释1.3. 列表1.4. 字典 二、Ansible 中 YAML 的应用2.1. Ansible 剧本&#xff08;Playbooks&#xff09;2.2. 变量定义2.3. 角色&#xff08;Roles&#xff09;2.4. Inventory 文件2.5. 数据类型2.6. 引用变量 在 Ansible 里&#x…

JavaScript_02 表单

表单常用演示: 1.图片 结果失真了... 2.切换图片 切换结果 3.表单:

使用Navicat Premium管理数据库时,如何关闭事务默认自动提交功能?

使用Navicat Premium管理数据库时&#xff0c;最糟心的事情莫过于事务默认自动提交&#xff0c;也就是你写完语句运行时&#xff0c;它自动执行commit提交至数据库&#xff0c;此时你就无法进行回滚操作。 建议您尝试取消勾选“选项”中的“自动开始事务”&#xff0c;点击“工…

android获取EditText内容,TextWatcher按条件触发

android获取EditText内容&#xff0c;TextWatcher按条件触发 背景&#xff1a;解决方案&#xff1a;效果&#xff1a; 背景&#xff1a; 最近在尝试用原生安卓实现仿element-ui表单校验功能&#xff0c;其中涉及到EditText组件内容的动态校验&#xff0c;初步实现功能后&#…