NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram

结论

Transformer 大于 传统的Seq2Seq 大于 LSTM 大于  RNN 大于 传统的n-gram

n-gram VS Transformer

我们可以用一个 图书馆查询 的类比来解释它们的差异:


一、核心差异对比

维度n-gram 模型Transformer
工作方式固定窗口的"近视观察员"全局关联的"侦探"
依赖距离只能看前N-1个词(如3-gram只看前2词)可关注任意距离的上下文
语义理解机械统计共现频率理解词语间的深层关系
典型场景"牛奶要配_" → "饼干"(高频搭配)"牛奶要配_" → "燕麦"(健康概念关联)

二、具体差异拆解

1. 观察范围限制
  • n-gram 像用 望远镜片段观察
    例:处理句子 "虽然价格贵但质量真的好"

    • 3-gram只能看到局部组合:
      ["价格_贵_但", "贵_但_质量", "但_质量_真"]

    • 无法关联首尾的 "价格" 和 "质量" 的对比关系

  • Transformer 像用 全景扫描仪
    通过自注意力机制,让每个词都能关注到句子中所有其他词:

    # "质量"对"价格"的注意力权重可能高达0.7
    # "但"对"虽然"的注意力权重可能达0.6
2. 语义关联能力
  • n-gram 的局限性案例
    输入: "苹果股价大涨,因为新品很甜"

    • 3-gram会错误关联:"新品_很_甜" → 可能预测"西瓜"(高频搭配)

    • 无法发现 "苹果" 在此处指公司而非水果

  • Transformer 的解决方案
    通过上下文注意力权重识别语义:

    "苹果" ← 关注到 "股价" (权重0.8) → 判定为企业  
    "甜"   ← 关注到 "新品" (权重0.3) + "股价" (权重0.6) → 判定为比喻用法
3. 处理新词能力
  • n-gram 的困境
    遇到新词 "元宇宙"

    • 所有包含 "元宇宙" 的n-gram都成为低频组合

    • 导致预测结果不可靠

  • Transformer 的优势
    通过词向量和注意力机制:

    • 即使没出现过 "元宇宙",也能根据词根 "元"+"宇宙"_ 推测其语义

    • 类似处理过 "元数据" 和 "宇宙探索" 的经验

n-gram VS RNN

n-gram 和 RNN 在自然语言处理中是两种截然不同的建模思路,我们可以通过 图书馆管理 的类比来理解它们的核心差异:


一、核心机制对比

维度n-gram 模型RNN 模型
记忆方式固定长度的纸质笔记可延展的电子备忘录
依赖距离只能记住前N-1步(如3-gram记2步)理论上可记忆无限步(实际约50-100步)
计算特征基于统计频次的查表操作基于隐藏状态的动态计算
典型表现"昨天买的_奶茶"→"珍珠"(高频搭配)"昨天买的_奶茶"→"已经变质"(因果推理)

二、工作原理拆解

1. 信息传递方式
  • n-gram 像 接力赛跑
    每个预测只依赖前一棒选手(前N-1个词):

    输入:"我想喝一杯热的"
    3-gram预测流程:
    想喝→杯 → 喝杯→热 → 杯热→的 → 热的→[END]
  • RNN 像 滚雪球
    通过隐藏状态积累历史信息:

    hidden_state = update("我", init_state)
    hidden_state = update("想", hidden_state)
    hidden_state = update("喝", hidden_state)
    # 当处理到"热"时,隐藏状态已包含"我/想/喝"的信息

3. 处理长距离依赖
  • n-gram 的局限案例
    句子:"虽然这款手机价格比同类产品高2000元,但它的_"

    • 5-gram只能看到"产品高2000元但它的"

    • 无法关联开头的"虽然"与结尾的预测

  • RNN 的优势体现
    通过隐藏状态传递,即使相距20个词:

    h_("虽然") → h_("价格") → ... → h_("它的") 
    仍保留着转折关系的语义特征

三、性能对比实验

以 诗歌生成 任务为例:

输入: "春风又绿江南岸"
模型续写结果得分
3-gram"明月何时照我还"(高频组合)合格但缺乏新意
RNN"细雨轻拂柳叶弯"(创新性关联)更具文学性
人类"万物复苏生机盎"标准答案

关键差异

  • n-gram依赖"江南岸"与"明月"的常见搭配

  • RNN捕捉到"春风"与"细雨"的意境关联

RNN/LSTM VS Seq2Seq

在序列到序列(Seq2Seq)任务中(如机器翻译、文本摘要等),直接使用RNN后通过全连接层输出(1 to N)看似简单,但存在以下关键问题,而编码器-解码器(Encoder-Decoder)结构通过分步编码和解码的方式有效解决了这些挑战:

1. 序列的时序依赖性

自然语言中的单词顺序至关重要。例如:

  • 句子1猫追老鼠

  • 句子2老鼠追猫
    两个句子包含相同的词,但含义完全相反。

  • 简单词嵌入+全连接的缺陷
    若直接将所有词嵌入拼接成一个向量(如[猫, 追, 老鼠] → 一个长向量),模型会丢失词序信息,无法区分两个句子的差异。

  • 编码器-解码器的优势
    通过LSTM或Transformer按顺序处理输入词,编码器能够保留词序信息,并在隐藏状态中传递时序依赖关系。

2. 输入和输出的变长问题

在Seq2Seq任务中,输入和输出的长度通常是动态变化的。例如:

  • 输入:英文句子 "Hello world"(2个词)

  • 输出:中文翻译 "你好世界"(3个词)

  • 简单词嵌入+全连接的缺陷
    全连接层需要固定维度的输入和输出,无法处理变长序列。

  • 编码器-解码器的优势

    • 编码器可处理任意长度的输入序列,将其压缩为固定长度的上下文向量(hiddencell)。

    • 解码器基于上下文向量逐步生成变长的输出序列(逐词生成,直到预测到<eos>)。


3. 长距离依赖建模

语言中常存在跨越多个单词的依赖关系。例如:

  • 句子The cat, which was hungry and had been wandering the streets for days, finally found some food.
    主句的主语cat与谓语found相隔很远。

  • 简单词嵌入+全连接的缺陷
    全连接层难以捕捉长距离依赖(尤其是当句子较长时)。

  • 编码器-解码器的优势

    • LSTM通过门控机制(遗忘门、输入门)逐步更新cell状态,传递长期信息。

    • Transformer通过自注意力机制(Self-Attention)直接建模词与词之间的全局依赖。


4. 信息压缩与语义表示

编码器的核心作用是将输入序列编码为一个全局语义表示(上下文向量)。

  • 简单词嵌入+全连接的缺陷
    直接将所有词嵌入拼接为一个向量,缺乏对整体语义的抽象(相当于“词袋模型”)。

  • 编码器-解码器的优势

    • 编码器通过循环或注意力机制逐步融合上下文信息,生成紧凑的语义表示。

    • 解码器基于此表示逐步展开生成目标序列,确保输出与输入语义一致。


5. 模型效率与参数共享

  • 简单词嵌入+全连接的缺陷
    若输入长度为N,输出长度为M,全连接层的参数量为 (N×embedding_dim) × M,随序列长度增长迅速膨胀,导致计算成本高且易过拟合。

  • 编码器-解码器的优势

    • LSTM或Transformer通过参数共享(同一层处理所有时间步),参数量仅与隐藏层维度相关,与序列长度无关。

    • 例如,LSTM的参数量为 4×(embedding_dim + hidden_dim)×hidden_dim,与输入长度N无关。


6. 实际案例对比

假设用两种模型处理机器翻译任务:

方案1:简单全连接
  • 输入:将源句子所有词嵌入拼接为一个向量(如N=5embedding_dim=256 → 输入维度1280)。

  • 输出:直接映射到目标语言的词表(如vocab_size=10000),参数量为 1280×10000 = 12.8M

  • 问题

    • 无法处理长度变化的输入输出。

    • 无法建模词序和长距离依赖。

    • 参数量大且难以训练。

方案2:编码器-解码器(LSTM)
  • 编码器:LSTM逐步处理源序列,输出上下文向量(如hidden_dim=256)。

  • 解码器:LSTM基于上下文向量逐词生成目标序列。

  • 参数量:编码器和解码器的LSTM参数量均为 4×(256+256)×256 ≈ 1M,总计约2M

  • 优势

    • 处理变长序列。

    • 建模词序和长距离依赖。

    • 参数量小且高效。


总结

编码器-解码器结构通过分步编码和解码,解决了以下核心问题:

  1. 时序依赖性:保留词序信息。

  2. 变长序列处理:动态生成输出。

  3. 长距离依赖建模:通过LSTM或注意力机制捕捉全局关系。

  4. 语义压缩与传递:生成紧凑的上下文表示。

  5. 模型效率:参数共享降低计算成本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69674.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Julius AI 人工智能数据分析工具介绍

Julius AI 是一款由 Casera Labs 开发的人工智能数据分析工具&#xff0c;旨在通过自然语言交互和强大的算法能力&#xff0c;帮助用户快速分析和可视化复杂数据。这款工具特别适合没有数据科学背景的用户&#xff0c;使数据分析变得简单高效。 核心功能 自然语言交互&#x…

H3CNE-31-BFD

Bidirectional Forwarding Dection&#xff0c;双向转发检查 作用&#xff1a;毫秒级故障检查&#xff0c;通常结合三层协议&#xff08;静态路由、vrrp、ospf、BGP等&#xff09;&#xff0c;实现链路故障快速检查。 BFD配置示例 没有中间的SW&#xff0c;接口down&#xff…

2025最新版MySQL安装使用指南

2025最新版MySQL安装使用指南 The Installation and Usage Guide of the Latest Version of Oracle MySQL in 2025 By JacksonML 1. 获取MySQL 打开Chrome浏览器&#xff0c;访问官网链接&#xff1a;https://www.mysql.com/ &#xff0c;随即打开MySQL官网主页面&#xff…

[前端开发]记录国内快速cdn库,用于在线引入JavaScript第三方库

字节跳动的两个库,官网地址如下,搜索时优先找第一个,可用来链接axios,Boostrap等等第三方库 1. 字节跳动静态资源公共库 比如说搜索lodash,用于节流防抖的库,点击复制即可,一般是****.js或****.min.js这样的为后缀名的链接 点击复制即可, <script src"https://lf9-cd…

【云安全】云原生-K8S-搭建/安装/部署

一、准备3台虚拟机 务必保证3台是同样的操作系统&#xff01; 1、我这里原有1台centos7&#xff0c;为了节省资源和效率&#xff0c;打算通过“创建链接克隆”2台出来 2、克隆之前&#xff0c;先看一下是否存在k8s相关组件&#xff0c;或者docker相关组件 3、卸载原有的docker …

vim交换文件的作用

1.数据恢复&#xff1a;因为vim异常的退出&#xff0c;使用交换文件可以恢复之前的修改内容。 2.防止多人同时编辑&#xff1a;vim检测到交换文件的存在,会给出提示&#xff0c;以避免一个文件同时被多人编辑。 &#xff08;vim交换文件的工作原理&#xff1a;vim交换文件的工作…

【Block总结】OutlookAttention注意力,捕捉细节和局部特征|即插即用

论文信息 标题: VOLO: Vision Outlooker for Visual Recognition作者: Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, Shuicheng Yan代码链接: https://github.com/sail-sg/volo论文链接: https://arxiv.org/pdf/2106.13112 创新点 前景注意力机制: VOLO引入了一种称为“…

【Unity3D】实现横版2D游戏角色二段跳、蹬墙跳、扶墙下滑

目录 一、二段跳、蹬墙跳 二、扶墙下滑 一、二段跳、蹬墙跳 GitHub - prime31/CharacterController2D 下载工程后直接打开demo场景&#xff1a;DemoScene&#xff08;Unity 2019.4.0f1项目环境&#xff09; Player物体上的CharacterController2D&#xff0c;Mask添加Wall层…

premierePro 2022创建序列方式

概念 序列类似于画画的画布&#xff0c;类似ps的蒙层 一、新建序列方式 1、文件-新建-序列 2、直接将视频拖入时间轴&#xff08;没有序列时&#xff0c;如果有序列不行&#xff09; 3、右键右下角空白处 4、点击新建项按钮

九大服务构建高效 AIOps 平台,全面解决GenAI落地挑战

最近,DevOps运动的联合创始人Patrick Debois分享了他对AI平台与软件研发关系的深刻见解,让我们一起来探讨这个话题。 在AI的落地过程中,我们面临着两个主要难题: 引入AI编码工具后的开发者角色转变:随着像GitHub Copilot这样的AI工具的普及,工程师的角色正在发生深刻变革…

Golang :用Redis构建高效灵活的应用程序

在当前的应用程序开发中&#xff0c;高效的数据存储和检索的必要性已经变得至关重要。Redis是一个快速的、开源的、内存中的数据结构存储&#xff0c;为各种应用场景提供了可靠的解决方案。在这个完整的指南中&#xff0c;我们将学习什么是Redis&#xff0c;通过Docker Compose…

对顾客行为的数据分析:融入2+1链动模式、AI智能名片与S2B2C商城小程序的新视角

摘要&#xff1a;随着互联网技术的飞速发展&#xff0c;企业与顾客之间的交互方式变得日益多样化&#xff0c;移动设备、社交媒体、门店、电子商务网站等交互点应运而生。这些交互点不仅为顾客提供了便捷的服务体验&#xff0c;同时也为企业积累了大量的顾客行为数据。本文旨在…

毕业设计--具有车流量检测功能的智能交通灯设计

摘要&#xff1a; 随着21世纪机动车保有量的持续增加&#xff0c;城市交通拥堵已成为一个日益严重的问题。传统的固定绿灯时长方案导致了大量的时间浪费和交通拥堵。为解决这一问题&#xff0c;本文设计了一款智能交通灯系统&#xff0c;利用车流量检测功能和先进的算法实现了…

算法题(51):删除链表的倒数第N个节点

审题&#xff1a; 需要我们找到倒数第n个节点&#xff0c;并把他从链表中删除&#xff0c;然后把新的链表的头结点返回 思路&#xff1a; 该题的唯一难点就是如何找到单链表的倒数第n个节点 方法一&#xff1a;直接法 我们可以遍历一次单链表&#xff0c;然后把链表的总长度求出…

Ansible自动化运维实战--yaml的使用和配置(7/8)

文章目录 一、YAML 基本语法1.1. 缩进1.2. 注释1.3. 列表1.4. 字典 二、Ansible 中 YAML 的应用2.1. Ansible 剧本&#xff08;Playbooks&#xff09;2.2. 变量定义2.3. 角色&#xff08;Roles&#xff09;2.4. Inventory 文件2.5. 数据类型2.6. 引用变量 在 Ansible 里&#x…

JavaScript_02 表单

表单常用演示: 1.图片 结果失真了... 2.切换图片 切换结果 3.表单:

使用Navicat Premium管理数据库时,如何关闭事务默认自动提交功能?

使用Navicat Premium管理数据库时&#xff0c;最糟心的事情莫过于事务默认自动提交&#xff0c;也就是你写完语句运行时&#xff0c;它自动执行commit提交至数据库&#xff0c;此时你就无法进行回滚操作。 建议您尝试取消勾选“选项”中的“自动开始事务”&#xff0c;点击“工…

android获取EditText内容,TextWatcher按条件触发

android获取EditText内容&#xff0c;TextWatcher按条件触发 背景&#xff1a;解决方案&#xff1a;效果&#xff1a; 背景&#xff1a; 最近在尝试用原生安卓实现仿element-ui表单校验功能&#xff0c;其中涉及到EditText组件内容的动态校验&#xff0c;初步实现功能后&#…

星际战争模拟系统:新月的编程之道

星际战争模拟系统&#xff1a;新月的编程之道 作为一名在 25 世纪星际时代成长起来的科学家和军事战略家&#xff0c;我对编程和人工智能的热爱始于童年。我的父亲是一位著名的物理学家&#xff0c;母亲是一位杰出的生物工程师。在他们的影响下&#xff0c;我从小就对科学和技术…