【AI论文】扩散对抗后训练用于一步视频生成总结

摘要:扩散模型被广泛应用于图像和视频生成,但其迭代生成过程缓慢且资源消耗大。尽管现有的蒸馏方法已显示出在图像领域实现一步生成的潜力,但它们仍存在显著的质量退化问题。在本研究中,我们提出了一种在扩散预训练后针对真实数据进行的对抗后训练(APT)方法,用于一步视频生成。为了提高训练稳定性和质量,我们对模型架构和训练过程进行了多项改进,并引入了一种近似R1正则化目标。实验表明,我们的对抗后训练模型Seaweed-APT能够使用单个前向评估步骤实时生成2秒、1280x720分辨率、24帧每秒的视频。此外,我们的模型还能够在一步内生成1024px分辨率的图像,质量可与最先进的方法相媲美。Huggingface链接:Paper page 论文链接:2501.08316

一、引言

随着生成对抗网络(GANs)和扩散模型(Diffusion Models)的兴起,图像和视频生成领域取得了显著进展。然而,传统的扩散模型由于其迭代生成过程,导致生成成本高且耗时。尽管现有的蒸馏方法已经展示了在图像领域实现一步生成的可能性,但这些方法往往伴随着显著的质量下降。为了解决这个问题,本文提出了一种新的方法,即对抗后训练(Adversarial Post-Training, APT),通过对抗训练来加速扩散模型,实现图像和视频的一步生成。

二、背景与相关工作

1. 扩散模型加速

扩散模型已成为学习大规模图像和视频生成的标准方法。为了减少生成成本,研究者们提出了多种方法,其中扩散步长蒸馏(Diffusion Step Distillation)是一种有效的方法。这种方法通过预训练的扩散模型作为教师模型,生成目标,然后使用知识蒸馏技术训练学生模型,使学生模型能够使用更少的扩散步长复制教师模型的输出。尽管这些方法在减少推理步长方面取得了进展,但一步生成仍然面临巨大挑战,特别是在实现细粒度细节、最小化伪影和保持结构完整性方面。

2. 一步视频生成

一步视频生成的工作可以追溯到使用GANs的方法,如DVD-GAN、MoCoGAN-HD和StyleGAN-V等。然而,这些方法通常只能在受限的数据域上生成低质量的视频。最近,一些研究尝试将图像扩散模型蒸馏为一步视频生成模型,但这些方法生成的视频分辨率较低,且存在显著的质量下降。

3. 稳定对抗训练

在GANs中,R1正则化已被证明对于促进收敛是有效的。然而,在大规模对抗工作中,由于高阶梯度计算的计算成本高昂,且不被现代深度学习软件栈支持,因此R1正则化的使用受到限制。本文提出了一种近似R1正则化方法,以解决这一问题。

三、方法

1. 概述

本文的目标是将一个文本到视频的扩散模型转换为一步生成器。为此,我们采用对抗后训练(APT)方法,通过对抗优化来实现这一目标。整个训练过程遵循一个最小-最大游戏,其中判别器D尝试区分真实样本和生成样本,而生成器G则试图生成能够欺骗判别器的样本。

2. 生成器

直接对抗训练扩散模型会导致训练崩溃。为了解决这个问题,我们首先使用确定性蒸馏方法初始化生成器。具体来说,我们采用离散时间一致性蒸馏方法,通过均方误差损失进行简单蒸馏。蒸馏后的模型虽然生成的样本很模糊,但为后续的对抗训练提供了一个有效的初始化。

在后续的训练中,我们主要关注一步生成能力,并始终将最终时间步长T传递给基础模型。生成器的损失函数定义为:

其中,gG​(x)=log(1−σ(x)),σ(x)是sigmoid函数。

3. 判别器

判别器被训练为产生一个标量对数,以有效区分真实样本x和生成样本x^。为了实现稳定训练和提高质量,我们对判别器进行了多项改进:

  • 初始化:判别器骨干网络使用预训练的扩散模型进行初始化,并直接在潜在空间中操作。
  • 架构修改:在判别器的第16、26和36层引入新的仅交叉注意力变换器块,每个块使用一个可学习令牌作为查询,以交叉注意力到所有视觉令牌。
  • 输入处理:直接为判别器提供原始样本x和x^,避免引入伪影。由于判别器骨干网络是从扩散模型初始化的,且扩散预训练目标在t=0时没有意义,因此我们使用不同时间步长的集合作为输入。

判别器的损失函数定义为:

其中,,λ是正则化项的权重,σ是高斯噪声的方差。

4. 近似R1正则化

由于高阶梯度计算的计算成本高昂,且不被现代深度学习软件栈支持,因此我们提出了一种近似R1正则化方法。具体来说,我们通过对真实数据添加高斯噪声来扰动真实数据,并鼓励判别器对真实数据和其扰动之间的预测保持接近。这种方法减少了判别器在真实数据上的梯度,从而实现了与原始R1正则化一致的目标。

四、实验结果

1. 定性评估

我们首先在图像生成方面比较了我们的APT模型与原始扩散模型。实验结果显示,APT模型在保持细节和真实感方面表现更好。此外,我们还与其他一步图像生成方法进行了比较,结果显示我们的方法在细节保持和结构完整性方面表现优异。

在视频生成方面,APT模型在视觉细节和真实感方面也有所提升,但在结构完整性和文本对齐方面仍然存在一定的降解。然而,即使如此,APT模型生成的视频在1280×720分辨率下仍然保持了相当的质量。

2. 用户研究

我们进行了一系列用户研究,以评估生成样本的视觉保真度、结构完整性和文本对齐性。实验结果显示,我们的APT模型在视觉保真度方面表现优于其他一步生成方法,但在结构完整性和文本对齐性方面仍存在一定的不足。尽管如此,我们的模型仍然达到了与当前最先进方法相当的性能。

3. 消融研究

我们进行了一系列消融研究,以评估不同组件对模型性能的影响。实验结果显示,近似R1正则化对于维持稳定训练至关重要,没有它训练会迅速崩溃。此外,使用更深的判别器网络和多层特征可以显著提高图像质量。我们还发现,指数移动平均(EMA)和较大的批量大小对于稳定训练和提高模型性能也是有益的。

五、结论与局限

本文提出了一种新的对抗后训练方法(APT),用于加速扩散模型的一步生成。通过引入近似R1正则化和对判别器进行多项改进,我们成功训练了一个能够实时生成高分辨率视频和图像的模型。尽管我们的模型在视觉保真度方面表现优异,但在结构完整性和文本对齐性方面仍存在一定的不足。未来的工作将致力于进一步提高模型的结构完整性和文本对齐性,并探索生成更长时间视频的可能性。

六、局限性与未来工作

尽管我们的方法在一步生成高分辨率视频方面取得了显著进展,但仍存在一些局限性。首先,由于计算资源的限制,我们目前只能训练模型生成最多两秒的视频。未来的工作将探索使用更多的计算资源来生成更长时间的视频。其次,我们观察到APT可能会对文本对齐产生负面影响,这将是未来工作中的一个重要研究方向。最后,我们将继续探索如何进一步提高模型的结构完整性和生成质量。


本文通过引入对抗后训练方法(APT),成功实现了扩散模型的一步生成,显著提高了生成速度和效率。尽管仍存在一些局限性,但本文的研究为未来的工作提供了有价值的参考和启示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69465.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

低代码系统-产品架构案例介绍、明道云(十一)

明道云HAP-超级应用平台(Hyper Application Platform),其实就是企业级应用平台,跟微搭类似。 通过自设计底层架构,兼容各种平台,使用低代码做到应用搭建、应用运维。 企业级应用平台最大的特点就是隐藏在冰山下的功能很深&#xf…

2025年AI手机集中上市,三星Galaxy S25系列上市

2025年被认为是AI手机集中爆发的一年,各大厂商都会推出搭载人工智能的智能手机。三星Galaxy S25系列全球上市了。 三星Galaxy S25系列包含S25、S25和S25 Ultra三款机型,起售价为800美元(约合人民币5800元)。全系搭载骁龙8 Elite芯…

【ESP32】ESP-IDF开发 | WiFi开发 | TCP传输控制协议 + TCP服务器和客户端例程

1. 简介 TCP(Transmission Control Protocol),全称传输控制协议。它的特点有以下几点:面向连接,每一个TCP连接只能是点对点的(一对一);提供可靠交付服务;提供全双工通信&…

2025数学建模美赛|赛题翻译|E题

2025数学建模美赛,E题赛题翻译 更多美赛内容持续更新中...

【Elasticsearch】Elasticsearch的查询

Elasticsearch的查询 DSL查询基础语句叶子查询全文检索查询matchmulti_match 精确查询termrange 复合查询算分函数查询bool查询 排序分页基础分页深度分页 高亮高亮原理实现高亮 RestClient查询基础查询叶子查询复合查询排序和分页高亮 数据聚合DSL实现聚合Bucket聚合带条件聚合…

什么是循环神经网络?

一、概念 循环神经网络(Recurrent Neural Network, RNN)是一类用于处理序列数据的神经网络。与传统的前馈神经网络不同,RNN具有循环连接,可以利用序列数据的时间依赖性。正因如此,RNN在自然语言处理、时间序列预测、语…

深入探索C++17的std::any:类型擦除与泛型编程的利器

文章目录 基本概念构建方式构造函数直接赋值std::make_anystd::in_place_type 访问值值转换引用转换指针转换 修改器emplaceresetswap 观察器has_valuetype 使用场景动态类型的API设计类型安全的容器简化类型擦除实现 性能考虑动态内存分配类型转换和异常处理 总结 在C17的标准…

物管系统赋能智慧物业管理提升服务质量与工作效率的新风潮

内容概要 在当今的物业管理领域,物管系统的崛起为智慧物业管理带来了新的机遇和挑战。这些先进的系统能够有效整合各类信息,促进数字化管理,从而提升服务质量和工作效率。通过物管系统,物业管理者可以实时查看和分析各种数据&…

分组表格antd+ react +ts

import React from "react"; import { Table, Tag } from "antd"; import styles from "./index.less"; import GroupTag from "../Tag"; const GroupTable () > {const columns [{title: "姓名",dataIndex: "nam…

【JAVA实战】如何使用 Apache POI 在 Java 中写入 Excel 文件

大家好!🌟 在这篇文章中,我们将带你深入学习如何使用 Apache POI 在 Java 中编写 Excel 文件的技巧!📊📚 如果你是 Java 开发者,或者正在探索如何处理 Excel 文件的数据,那么这篇文章…

使用Avalonia UI实现DataGrid

1.Avalonia中的DataGrid的使用 DataGrid 是客户端 UI 中一个非常重要的控件。在 Avalonia 中,DataGrid 是一个独立的包 Avalonia.Controls.DataGrid,因此需要单独通过 NuGet 安装。接下来,将介绍如何安装和使用 DataGrid 控件。 2.安装 Dat…

C#分页思路:双列表数据组合返回设计思路

一、应用场景 需要分页查询(并非全表查载入物理内存再筛选),返回列表1和列表2叠加的数据时 二、实现方式 列表1必查,列表2根据列表1的查询结果决定列表2的分页查询参数 三、示意图及其实现代码 1.示意图 黄色代表list1的数据&a…

【Linux】磁盘

没有被打开的文件 文件在磁盘中的存储 认识磁盘 磁盘的存储构成 磁盘的效率 与磁头运动频率有关。 磁盘的逻辑结构 把一面展开成线性。 通过扇区的下标编号可以推算出在磁盘的位置。 磁盘的寄存器 控制寄存器:负责告诉磁盘是读还是写。 数据寄存器:给…

第13章 深入volatile关键字(Java高并发编程详解:多线程与系统设计)

1.并发编程的三个重要特性 并发编程有三个至关重要的特性,分别是原子性、有序性和可见性 1.1 原子性 所谓原子性是指在一次的操作或者多次操作中,要么所有的操作全部都得到了执行并 且不会受到任何因素的干扰而中断,要么所有的操作都不执行…

记录 | Docker的windows版安装

目录 前言一、1.1 打开“启用或关闭Windows功能”1.2 安装“WSL”方式1:命令行下载方式2:离线包下载 二、Docker Desktop更新时间 前言 参考文章:Windows Subsystem for Linux——解决WSL更新速度慢的方案 参考视频:一个视频解决D…

stack 和 queue容器的介绍和使用

1.stack的介绍 1.1stack容器的介绍 stack容器的基本特征和功能我们在数据结构篇就已经详细介绍了,还不了解的uu, 可以移步去看这篇博客哟: 数据结构-栈数据结构-队列 简单回顾一下,重要的概念其实就是后进先出,栈在…

JUC--ConcurrentHashMap底层原理

ConcurrentHashMap底层原理 ConcurrentHashMapJDK1.7底层结构线程安全底层具体实现 JDK1.8底层结构线程安全底层具体实现 总结JDK 1.7 和 JDK 1.8实现有什么不同?ConcurrentHashMap 中的 CAS 应用 ConcurrentHashMap ConcurrentHashMap 是一种线程安全的高效Map集合…

C++17 std::variant 详解:概念、用法和实现细节

文章目录 简介基本概念定义和使用std::variant与传统联合体union的区别 多类型值存储示例初始化修改判断variant中对应类型是否有值获取std::variant中的值获取当前使用的type在variant声明中的索引 访问std::variant中的值使用std::get使用std::get_if 错误处理和访问未初始化…

NLP自然语言处理通识

目录 ELMO 一、ELMo的核心设计理念 1. 静态词向量的局限性 2. 动态上下文嵌入的核心思想 3. 层次化特征提取 1. 双向语言模型(BiLM) 2. 多层LSTM的层次化表示 三、ELMo的运行过程 1. 预训练阶段 2. 下游任务微调 四、ELMo的突破与局限性 1. 技术突破 2. …

在做题中学习(82):最小覆盖子串

解法:同向双指针——>滑动窗口 思路:题目要求找到s里包含t所有字符的最小子串,这就需要记录在s中每次查找并扩大范围时所包含进去的字符种类是否和t的相同,并且:题目提示t中会有重复字符,因此不能简单认…