3. ML机器学习

     

1.人工智能与机器学习的关系

       机器学习是人工智能的一个重要分支,是人工智能的一个子集。它无需显式编程,而是通过数据和算法使机器能够自动学习和改进,从而实现智能行为。机器学习依赖于算法来识别数据中的模式,并通过这些模式做出预测或决策。

       机器学习是实现人工智能的一种手段,但AI不仅仅局限于机器学习,还包括许多其他方法和技术,比如专家系统、规则推理、搜索算法、自然语言处理等多种技术。

2.机器学习的几种技术

1. 监督学习(Supervised Learning)
  • 定义:监督学习是一种从标注数据中学习的方式。在监督学习中,训练数据包括输入和对应的正确输出标签,算法通过学习这些数据之间的关系来进行预测。监督学习的任务主要是分类和回归(预测)。
  • 应用场景
    • 分类问题:例如,垃圾邮件分类(将邮件分为“垃圾邮件”和“非垃圾邮件”)。
    • 回归问题:例如,房价预测(根据特征如面积、位置等预测房屋价格)。
  • 常见算法
    • 线性回归(Linear Regression)
    • 逻辑回归(Logistic Regression)
    • 支持向量机(SVM)
    • 决策树(Decision Trees)
    • 随机森林(Random Forests)
    • k最近邻(K-Nearest Neighbors, KNN)
    • 神经网络(Neural Networks)
2. 无监督学习(Unsupervised Learning)
  • 定义:无监督学习是一种学习方式,其中训练数据没有标签,模型只能根据输入数据的特征发现隐藏的结构或规律。
  • 应用场景
    • 聚类问题:例如,顾客分群(将顾客按照购买行为或兴趣分为不同的群体)。
    • 降维问题:例如,特征选择和数据压缩(通过降维减少数据的复杂性,如主成分分析 PCA)。
  • 常见算法
    • K均值聚类(K-Means Clustering)
    • 层次聚类(Hierarchical Clustering)
    • DBSCAN
    • 自编码器(Autoencoders)
    • 主成分分析(PCA)
    • 独立成分分析(ICA)
3. 半监督学习(Semi-supervised Learning)
  • 定义:半监督学习介于监督学习和无监督学习之间。它使用少量标注数据和大量未标注数据来训练模型,来提高学习的准确性。通常,标注数据较难获得或成本较高,而未标注数据较为容易获得。
  • 应用场景
    • 图像分类:当手动标注每张图片成本很高时,可以用少量标注数据配合大量未标注数据进行训练。
    • 文本分类:用于一些大型数据集,其中标注样本很少,但未标注数据非常丰富。
  • 常见算法
    • 基于生成模型的算法(例如,生成对抗网络 GANs)
    • 图模型(如图卷积网络 GCN)
    • 自训练(Self-training)
    • 协同训练(Co-training)
4. 强化学习(Reinforcement Learning, RL)
  • 定义:强化学习是一种通过与环境交互、试错学习的方式来让智能体(Agent)学习如何采取行动并获得最大回报的技术。在这种学习中,模型并不是通过标注数据来学习,而是根据环境给予的反馈信号(奖励或惩罚)来优化其行为策略,最大化长期回报。适用于动态决策或控制。
  • 应用场景
    • 游戏智能:例如,AlphaGo通过强化学习与自己对弈,学会了围棋的高阶技巧。
    • 自动驾驶:自动驾驶系统通过与环境互动,不断学习如何做出最优驾驶决策。
    • 机器人控制:例如,机器人通过不断尝试、失败和优化来学习如何完成任务(如抓取物体)。
  • 常见算法
    • Q学习(Q-learning)
    • 深度Q网络(Deep Q-Network, DQN)
    • 策略梯度方法(Policy Gradient)
    • Proximal Policy Optimization(PPO)
    • Actor-Critic方法
5. 自监督学习(Self-supervised Learning)
  • 定义:自监督学习是一种特殊形式的无监督学习,其中模型通过数据本身的部分信息来生成标签,从而进行训练,获取对数据的更深入理解。自监督学习的目标是通过创造预任务(预训练任务)让模型学习有用的表示。
  • 应用场景
    • 自然语言处理:例如,BERT和GPT等预训练语言模型通过自监督学习从大量文本中学习语言表示。
    • 图像处理:例如,使用图像的部分信息预测其他部分(例如,通过遮挡部分图像来预测被遮挡的区域)。
  • 常见算法
    • BERT(Bidirectional Encoder Representations from Transformers)
    • GPT(Generative Pre-trained Transformer)
    • SimCLR(Simple Contrastive Learning)
6. 迁移学习(Transfer Learning)
  • 定义:迁移学习是一种利用已经在其他任务或领域上训练好的模型(或者部分模型参数)来加速当前任务学习的方法。它特别适用于目标任务的数据较少的情况下。
  • 应用场景
    • 图像分类:例如,使用在ImageNet上预训练的模型(如ResNet或VGG),然后通过迁移学习应用于医学图像分类。
    • 自然语言处理:例如,BERT和GPT等预训练语言模型可迁移到不同的文本分类任务上。
  • 常见算法
    • Fine-tuning(微调)
    • 领域自适应(Domain Adaptation)

  7. 深度学习(Deep Learning)
  • 定义:深度学习是一种基于多层神经网络的机器学习方法,具有自动从数据中学习特征的能力。深度学习通常涉及大规模的数据和复杂的网络结构,能够在图像、语音、文本等领域表现出强大的性能。
  • 应用场景
    • 计算机视觉:如图像分类、目标检测、人脸识别等。
    • 自然语言处理:如机器翻译、情感分析、语音识别等。
    • 语音识别与合成:如语音助手、自动语音转写等。
  • 常见算法和架构
    • 卷积神经网络(CNN)
    • 循环神经网络(RNN)
    • 长短期记忆网络(LSTM)
    • 生成对抗网络(GAN)
    • 变分自编码器(VAE)
    • Transformer和BERT、GPT等预训练语言模型

       以上这些是常见的机器学习的技术,但随着技术的发展,还有很多新的技术在不断涌现。对于复杂应用,一般是几种技术综合使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/67714.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis之秒杀活动

目录 全局唯一ID&#xff1a; 为什么 count 不可能为 null&#xff1f; 为什么返回值是 timestamp << COUNT_BITS | count&#xff1f; 整体的逻辑 (1) 生成时间戳 (2) 生成序列号 (3) 拼接时间戳和序列号 超卖问题&#xff1a; 基于版本号的乐观锁 CAS思想 …

VSCode 在Windows下开发时使用Cmake Tools时输出Log乱码以及CPP文件乱码的终极解决方案

在Windows11上使用VSCode开发C程序的时候&#xff0c;由于使用到了Cmake Tools插件&#xff0c;在编译运行的时候&#xff0c;会出现输出日志乱码的情况&#xff0c;那么如何解决呢&#xff1f; 这里提供了解决方案&#xff1a; 当Settings里的Cmake: Output Log Encoding里设…

【C++经典例题】求1+2+3+...+n,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a; 期待您的关注 题目描述&#xff1a; 原题链接&#xff1a; 求123...n_牛客题霸_牛客网 (nowcoder.com) 解题思路&#xff1a; …

STM32 单片机 练习项目 LED灯闪烁LED流水灯蜂鸣器 未完待续

个人学习笔记 文件路径&#xff1a;程序源码\STM32Project-DAP&DAPmini\1-1 接线图 3-1LED闪烁图片 新建项目 新建项目文件 选择F103C8芯片 关闭弹出窗口 拷贝资料 在项目内新建3个文件夹 Start、Library、User Start文件拷贝 从资料中拷贝文件 文件路径&#xff1a;固…

DAY15 神经网络的参数和变量

DAY15 神经网络的参数和变量 一、参数和变量 在神经网络中&#xff0c;参数和变量是两个关键概念&#xff0c;它们分别指代不同类型的数据和设置。 参数&#xff08;Parameters&#xff09; 定义&#xff1a;参数是指在训练过程中学习到的模型内部变量&#xff0c;这些变量…

VS Code 可视化查看 C 调用链插件 C Relation

简介 一直想用 SourceInsight 一样的可以查看函数调用链一样的功能&#xff0c;但是又不想用 SourceInsight&#xff0c;找了一圈没有找到 VS Code 有类似功能的插件&#xff0c;索性自己开发了一个。 这是一个可以可视化显示 C 函数调用关系的 VS Code 插件&#xff0c;功能纯…

(k8s)kubectl不断重启问题解决!

1.问题描述&#xff1a; 在服务器上安装完k8s之后&#xff0c;会出现kubectl有时候连得上&#xff0c;等之后再去连接的时候又断开&#xff0c;同时节点出现了NotReady的情况&#xff0c; 出现了这两种双重症状 2.解决问题 自己的思路&#xff1a;查看日志&#xff0c;检查报…

什么是数据湖?大数据架构的未来趋势

&#x1f496; 欢迎来到我的博客&#xff01; 非常高兴能在这里与您相遇。在这里&#xff0c;您不仅能获得有趣的技术分享&#xff0c;还能感受到轻松愉快的氛围。无论您是编程新手&#xff0c;还是资深开发者&#xff0c;都能在这里找到属于您的知识宝藏&#xff0c;学习和成长…

【Leetcode·中等·数组】59. 螺旋矩阵 II(spiral matrix ii)

题目描述 英文版描述 Given a positive integer n, generate an n x n matrix filled with elements from 1 to n(2) in spiral order. Example 1: Input: n 3 Output: [[1,2,3],[8,9,4],[7,6,5]] 提示&#xff1a; 1 < n < 20 英文版地址 https://leetcode.com…

Open WebUI 与 AnythingLLM 安装部署

在前文 Ollama私有化部署大语言模型LLM&#xff08;上&#xff09;-CSDN博客 中通过Ollama来搭建运行私有化大语言模型&#xff0c;但缺少用户交互的界面&#xff0c;特别是Web可视化界面。 对此&#xff0c;本文以Open WebUI和AnythingLLM为例分别作为Ollama的前端Web可视化界…

论文导读 | 数据库系统中基于机器学习的基数估计方法

背景 基数估计任务是在一个查询执行之前预测其基数&#xff0c;基于代价的查询优化器&#xff08;Cost Based Optimizer&#xff09;将枚举所有可能的执行计划&#xff0c;并利用估计的基数选出期望执行代价最小的计划&#xff0c;从而完成查询优化的任务。 然而&#xff0c;…

3D扫描建模有哪些优势和劣势?

3D扫描建模作为一种先进的数字化手段&#xff0c;在多个领域展现出了巨大的潜力和价值&#xff0c;但同时也存在一些劣势。以下是对3D扫描建模优势和劣势的详细分析&#xff1a; 3D扫描建模的优势 高精度数据采集&#xff1a; 三维扫描技术能够以极高的精度获取物体的三维数…

网络安全 信息收集入门

1.信息收集定义 信息收集是指收集有关目标应用程序和系统的相关信息。这些信息可以帮助攻击者了解目标系统的架构、技术实现细节、运行环境、网络拓扑结构、安全措施等方面的信息&#xff0c;以便我们在后续的渗透过程更好的进行。 2.收集方式-主动和被动收集 ①收集方式不同…

MBM指尖六维力触觉传感器:高灵敏度、低漂移,精准掌控力学世界

MBM指尖六维力触觉传感器是一种专为机器人设计的高性能传感器。它通过集成三轴力和三轴力矩的感知能力&#xff0c;能够精准捕捉复杂的力学信息。传感器采用MEMS与应变体复合测量技术&#xff0c;具备数字输出功能&#xff0c;显著降低漂移并减少安装偏移的影响。其紧凑轻便的设…

用 Python 绘制可爱的招财猫

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​​​​​ ​​​​​​​​​ ​​​​ 招财猫&#xff0c;也被称为“幸运猫”&#xff0c;是一种象征财富和好运的吉祥物&#xff0c;经常…

docker常用命令及dockerfile编写

docker常用命令及dockerfile编写 1.docker常用命令1.1镜像相关1.2容器相关1.3数据卷1.4网络模式 2.Dockerfile3.Dockerfile示例 1.docker常用命令 1.1镜像相关 镜像相当于是一个模板&#xff0c;可以实例化出很多个容器&#xff1b; #查看docker版本 docker -v#查看docker默…

2025新年源码免费送

2025很开门很开门的源码免费传递。不需要馒头就能获取4套大开门源码。 听泉偷宝&#xff0c;又进来偷我源码啦&#x1f44a;&#x1f44a;&#x1f44a;。欢迎偷源码 &#x1f525;&#x1f525;&#x1f525; 获取免费源码以及更多源码&#xff0c;可以私信联系我 我们常常…

springboot + vue+elementUI图片上传流程

1.实现背景 前端上传一张图片&#xff0c;存到后端数据库&#xff0c;并将图片回显到页面上。上传组件使用现成的elementUI的el-upload。、 2.前端页面 <el-uploadclass"upload-demo"action"http://xxxx.xxx.xxx:9090/file/upload" :show-file-list&q…

如何用 ESP32-CAM 做一个实时视频流服务器

文章目录 ESP32-CAM 概述ESP32-S 处理器内存Camera 模块MicroSD 卡槽天线板载 LED 和闪光灯其他数据手册和原理图ESP32-CAM 功耗 ESP32-CAM 引脚参考引脚排列GPIO 引脚哪些 GPIO 可以安全使用&#xff1f;GPIO 0 引脚MicroSD 卡引脚 ESP32-CAM 的烧录方式使用 ESP32-CAM-MB 编程…

Virgo:增强慢思考推理能力的多模态大语言模型

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…