基于Python爬虫大屏可视化的热门旅游景点数据分析系统

作者:计算机学姐
开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”

专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码

精品专栏:Java精选实战项目源码、Python精选实战项目源码、大数据精选实战项目源码

在这里插入图片描述

系统展示

管理员界面

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

用户界面

在这里插入图片描述

在这里插入图片描述

摘要

  本研究设计并实现了一个基于Python、Django、Vue和MySQL的热门旅游景点数据分析系统,该系统结合了Python爬虫技术用于数据收集,并通过大屏可视化方式展示分析结果。系统采用前后端分离架构,后端基于Django框架开发,使用MySQL数据库存储数据;前端采用Vue框架构建,提供友好的用户界面和交互体验。研究通过收集和分析热门旅游景点的游客流量、消费习惯、满意度等数据,为景区管理者提供决策支持,优化资源配置,提升游客体验。

研究意义

  该系统对旅游行业具有重要意义。首先,通过数据分析和可视化,景区管理者能够更清晰地了解游客的行为模式和偏好,从而优化旅游产品的设计和推广策略,提高旅游资源的利用效率和景区的经济效益。其次,系统能够及时发现并解决景区存在的问题,如设施不足、服务质量差等,从而提升游客满意度和忠诚度。此外,该研究有助于推动智慧旅游的发展,提升旅游行业的信息化和智能化水平,促进旅游业的可持续发展。

研究目的

  本研究的主要目的是构建一个高效、稳定的热门旅游景点数据分析平台,实现数据的有效采集、存储与管理。通过数据分析技术,深入挖掘游客行为模式和旅游市场趋势,为旅游决策提供数据支持。同时,通过前端界面的友好设计,提升用户体验,增强用户粘性。此外,研究还旨在促进旅游资源的优化配置,提升旅游景点的整体竞争力,为景区管理者提供有力的决策支持工具,助力旅游业的转型升级。

文档目录

1.绪论
  1.1 研究背景
  1.2 研究意义
  1.3 研究现状
  1.4 研究内容
2.相关技术
  2.1 Python语言
  2.2 B/S架构
  2.3 MySQL数据库
  2.4 Django框架
  2.5 Vue框架
3.系统分析
  3.1 系统可行性分析
    3.1.1 技术可行性分析
    3.1.2 经济可行性分析
    3.1.3 操作可行性分析
  3.2 系统性能分析
    3.2.1 易用性指标
    3.2.2 可扩展性指标
    3.2.3 健壮性指标
    3.2.4 安全性指标
  3.3 系统流程分析
    3.3.1 操作流程分析
    3.3.2 登录流程分析
    3.3.3 信息添加流程分析
    3.3.4 信息删除流程分析
  3.4 系统功能分析
4.系统设计
  4.1 系统概要设计
  4.2 系统功能结构设计
  4.3 数据库设计
    4.3.1 数据库E-R图设计
    4.3.2 数据库表结构设计
5.系统实现
  5.1 前台功能实现
  5.2 后台功能实现
6.系统测试
  6.1 测试目的及方法
  6.2 系统功能测试
    6.2.1 登录功能测试
    6.2.2 添加功能测试
    6.2.3 删除功能测试
  6.3 测试结果分析

代码

import requests
from bs4 import BeautifulSoupdef fetch_tourist_attractions(url):response = requests.get(url)soup = BeautifulSoup(response.content, 'html.parser')attractions = []for item in soup.select('.tourist-attraction'):name = item.select_one('.name').textaddress = item.select_one('.address').textrating = float(item.select_one('.rating').text)attractions.append({'name': name,'address': address,'rating': rating})return attractionsurl = 'http://example.com/tourist-attractions'
attractions = fetch_tourist_attractions(url)
for attraction in attractions:print(attraction)

总结

  本研究成功设计并实现了基于Python+Django+Vue+MySQL的热门旅游景点数据分析系统,系统有效整合了热门旅游景点的数据资源,通过数据分析和可视化技术,为景区管理者提供了有力的决策支持。未来,随着数据量的增加和技术的迭代,该系统将进一步完善功能,深化数据分析能力,为旅游业的繁荣发展贡献力量。

获取源码

一键三连噢~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/61004.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RAG经验论文《FACTS About Building Retrieval Augmented Generation-based Chatbots》笔记

《FACTS About Building Retrieval Augmented Generation-based Chatbots》是2024年7月英伟达的团队发表的基于RAG的聊天机器人构建的文章。 这篇论文在待读列表很长时间了,一直没有读,看题目以为FACTS是总结的一些事实经验,阅读过才发现FAC…

解析传统及深度学习目标检测方法的原理与具体应用之道

深度学习目标检测算法 常用的深度学习的目标检测算法及其原理和具体应用方法: R-CNN(Region-based Convolutional Neural Networks)系列1: 原理: 候选区域生成:R-CNN 首先使用传统的方法(如 Se…

boost之property

简介 property在boost.graph中有使用,用于表示点属性或者边属性 结构 #mermaid-svg-56YI0wFLPH0wixrJ {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-56YI0wFLPH0wixrJ .error-icon{fill:#552222;}#me…

Oracle 19c PDB克隆后出现Warning: PDB altered with errors受限模式处理

在进行一次19c PDB克隆过程中,发现克隆结束,在打开后出现了报错,PDB变成受限模式,以下是分析处理过程 09:25:48 SQL> alter pluggable database test1113 open instancesall; Warning: PDB altered with errors. Elapsed: 0…

AndroidStudio-Activity的生命周期

一、Avtivity的启动和结束 从当前页面跳到新页面,跳转代码如下: startActivity(new Intent(源页面.this,目标页面.class)); 从当前页面回到上一个页面,相当于关闭当前页面,返回代码如下: finis…

ubuntu20.04 解决Pycharm没有写入权限,无法通过检查更新更新的问题

ubuntu20.04 解决Pycharm没有写入权限,无法通过检查更新更新的问题 您提供的截图显示了一个关于PyCharm更新的问题,其中提到了:“PyCharm 没有 /opt/pycharm-community-2024.1.2 的写入权限,请通过特权用户运行以更新。” 这表明…

云原生之运维监控实践-使用Telegraf、Prometheus与Grafana实现对InfluxDB服务的监测

背景 如果你要为应用程序构建规范或用户故事,那么务必先把应用程序每个组件的监控指标考虑进来,千万不要等到项目结束或部署之前再做这件事情。——《Prometheus监控实战》 去年写了一篇在Docker环境下部署若依微服务ruoyi-cloud项目的文章,当…

WinDefender Weaker

PPL Windows Vista / Server 2008引入 了受保护进程的概念,其目的不是保护您的数据或凭据。其最初目标是保护媒体内容并符合DRM (数字版权管理)要求。Microsoft开发了此机制,以便您的媒体播放器可以读取例如蓝光,同时…

计算机视觉 1-8章 (硕士)

文章目录 零、前言1.先行课程:python、深度学习、数字图像处理2.查文献3.环境安装 第一章:概论1.计算机视觉的概念2.机器学习 第二章:图像处理相关基础1.图像的概念2.图像处理3.滤波器4.卷积神经网络CNN5.图像的多层表示:图像金字…

实习冲刺练习 第二十三天

每日一题 回文链表. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:bool isPalindrome(ListNode* head) {if(headnullptr) return false;vector<int> v;while(head!nullptr){//将链表的值存入数组中v.push_back(head->val);headhead->next;}in…

报错 No available slot found for the embedding model

报错内容 Server error: 503 - [address0.0.0.0:12781, pid304366] No available slot found for the embedding model. We recommend to launch the embedding model first, and then launch the LLM models. 目前GPU占用情况如下 解决办法: 关闭大模型, 先把 embedding mode…

RabbitMQ介绍和快速上手案例

文章目录 1.引入1.1同步和异步1.2消息队列的作用1.3rabbitMQ介绍 2.安装教程2.1更新软件包2.2安装erlang2.3查看这个erlang版本2.4安装rabbitMQ2.5安装管理页面2.6浏览器测试2.7添加管理员用户 3.rabbitMQ工作流程4.核心概念介绍4.1信道和连接4.2virtual host4.3quene队列 5.We…

数据结构(初阶4)---循环队列详解

循环队列 1.循环队列的结构  1).逻辑模式 2.实现接口  1).初始化  2).判断空和满  3).增加  4).删除  5).找头  6).找尾 3.循环队列的特点 1.循环队列的结构 1).逻辑模式 与队列是大同小异的&#xff0c; 其中还是有一个指向队列头的head指针&#xff0c; 也有一个指向尾…

java中volatile 类型变量提供什么保证?能使得一个非原子操作变成原子操作吗?

大家好&#xff0c;我是锋哥。今天分享关于【java中volatile 类型变量提供什么保证&#xff1f;能使得一个非原子操作变成原子操作吗&#xff1f;】面试题。希望对大家有帮助&#xff1b; java中volatile 类型变量提供什么保证&#xff1f;能使得一个非原子操作变成原子操作吗&…

Python - 初识Python;Python解释器下载安装;Python IDE(一)

一、初识Python Python 是一种高级编程语言&#xff0c;Python是一种面向对象的解释型计算机程序设计语言&#xff0c;Python由荷兰国家数学与计算机科学研究中心的吉多范罗苏姆&#xff08;&#xff09;Guido van Rossum吉多范罗苏姆&#xff08;&#xff09;于1989 年底发明…

AR眼镜方案_AR智能眼镜阵列/衍射光波导显示方案

在当今AR智能眼镜的发展中&#xff0c;显示和光学组件成为了技术攻坚的主要领域。由于这些组件的高制造难度和成本&#xff0c;其光学显示模块在整个设备的成本中约占40%。 采用光波导技术的AR眼镜显示方案&#xff0c;核心结构通常由光机、波导和耦合器组成。光机内的微型显示…

星辰资讯 | TiDB v7.5.4 v8.4.0 发版

作者&#xff1a; ShawnYan 原文来源&#xff1a; https://tidb.net/blog/6e299751 TiDB 8.4.0 DMR 发版 11 月 11 日&#xff0c;TiDB 8.4.0 版本发布&#xff0c;以下是该版本的一些关键特性和改进&#xff1a; 性能 分区表全局索引成为正式功能 &#xff1a;提高检索…

大模型基础BERT——Transformers的双向编码器表示

大模型基础BERT——Transformers的双向编码器表示 整体概况 BERT&#xff1a;用于语言理解的深度双向Transform的预训练 论文题目&#xff1a;BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Bidirectional Encoder Representations from…

DAHL:利用由跨越 29 个类别的 8,573 个问题组成的基准数据集,评估大型语言模型在生物医学领域长篇回答的事实准确性。

2024-11-14&#xff0c;由首尔国立大学创建的DAHL数据集&#xff0c;为评估大型语言模型&#xff08;LLMs&#xff09;在生物医学领域长文本生成中的幻觉问题提供了一个重要的工具&#xff0c;这对于提高模型的准确性和可靠性具有重要意义。 数据集地址&#xff1a;DAHL|生物医…

【微软:多模态基础模型】(1)从专家到通用助手

欢迎关注【youcans的AGI学习笔记】原创作品 【微软&#xff1a;多模态基础模型】&#xff08;1&#xff09;从专家到通用助手 【微软&#xff1a;多模态基础模型】&#xff08;2&#xff09;视觉理解 【微软&#xff1a;多模态基础模型】&#xff08;3&#xff09;视觉生成 【微…