单体架构 IM 系统之 Server 节点状态化分析

基于 http 短轮询模式的单体架构的 IM 系统见下图,即客户端通过 http 周期性地轮询访问 server 实现消息的即时通讯,也就是我们前面提到的 “信箱模型”。“信箱模型” 虽然实现非常容易,但是消息的实时性不高。

我们在上一篇文章(单体架构 IM 系统之长轮询方案设计)中提出了优化方案,即通过 http 长轮询方式模拟出长连接的效果。

基于 http 长轮询方式实现的 IM 系统的单体架构中, server 节点还是无状态化的吗?所谓 “无状态化” 节点,是指进程在内存和硬盘中没有独立的数据;很明显,不同的 server 节点会 hold 住不同客户端的 http 请求,也就是不同的 server 节点中会存储不同客户端的数据, server 节点是有状态化的;此时,点对点的消息发送逻辑肯定需要进行调整。

大家可以先思考几个问题:

  1. 在 http 长轮询模式下, server 节点是有状态的,如何实现 server 节点的高可用呢?

  2. 客户端 x 发消息给 y,如果 x 和 y 访问的是不同的 server 节点,应该如何处理呢?

  3. 在 http 长轮询模式下,怎样判断消息接收方是否在线呢?

我们直接给出在 http 长轮询模式下,消息点对点的发送流程;以客户端 x 发消息给客户端 y 为例,如下:

  • 客户端 x 向 server 端发送 http 消息请求;

  • server 首先将消息直接落库,分别写 “云消息表” 和 “离线表”;

  • 然后 server 访问缓存,获取消息接收方 y 的在线状态,若 y 不在线,则整个流程结束;

  • 如果消息接收方 y 在线,通过访问缓存获取 y 连接的是哪一个 server 节点;

  • 如果 y 和 x 连接的同一个 server 节点,则 server 将该消息通过 http 长轮询返回给客户端 y;

  • 如果 y 连接的是另一个 server 节点,此时需要当前 server节点将消息推送到目标 server 节点;

  • 最后目标 server 节点将消息通过 http 长轮询返回给客户端 y。

在上述流程中,有两个地方需要特别注意:

  1. 客户端每一次发起 http 长轮询请求,相当于一次心跳,表示用户的在线状态,需要在缓存中记录客户端的在线数据;在 http 短轮询模式中,缓存中记录的 session 数据是 map<uid, {type, cmd, time}> ,在 http 长轮询模式中,需要记录客户端请求的是哪一个 server 节点,所以 session 类型为 map<uid, {type, cmd, time, serverip}>。

  2. 不管消息接收方在线与否,server 节点接收消息后,都需要写 “离线表”,这样设计的原因是为了提高消息的可靠性;因为即使用户 “在线”,在 http 长轮询返回时,客户端有可能接收不到消息,同时,在一次完整的 http 长轮询请求的间隙中,消息都是有丢失的可能的,所以持久化 “离线表” 是可靠性的保证;因此,在每一次 http 长轮询请求中,都需要访问 “离线表”,一是删除客户端已经收到的消息,二是从 “离线表” 中获取还未收到的消息。

在 http 长轮询模式下, server 节点是有状态的,那么其高可用如何保证呢?这个问题很容易解决:首先 server 节点肯定要集群化部署,然后由 反向代理 nginx 转发请求到 server ; nginx 通过配置实现客户端ip的会话保持,即将相同的客户端请求始终转发到固定的 server 节点; 当 server 节点挂掉之后,nginx 将请求转发到其他 server 节点即可,服务仍将持续提供,只需变更缓存中客户端状态信息即可。

单体架构 IM 系统,从架构到设计,从协议到逻辑,其关键点都进行了 一 一 分析;最后,我们简单聊一下 server 的整体设计,server 通过 Go语言进行了实现,见下图。

  1. 主协程,不处理任何的业务逻辑,用于接收外部信号,如关闭程序等;

  2. 子协程,用于接收客户端连接,针对每一个客户端连接,子协程都会生成两个协程来维护该连接,即:每一条连接会有一个独立的协程组来维护(该协程组中有两个协程,一个用于读,一个用于写);

  3. 连接管理器,实现对所有连接的管理,从连接中读取请求交由业务逻辑模块处理;

  4. 业务逻辑模块,实现核心的业务逻辑,包括:登录、登出、心跳、发消息等;

  5. 在线用户管理器,维护连接当前 server 节点所有的客户端;如果消息接收方在当前 server 节点,在线用户管理器通过 管道(chan)将消息传输给连接管理器中消息接收方的连接;

  6. 通讯协议,是公共协议定义,由【连接管理器】【业务逻辑模块】【在线用户管理器】共同引用。

关于 “每一条连接会有一个独立的协程组来维护”,是 Go 语言通用的高效网络编程模型,见下图。

  • 客户端与服务端建立连接时,在服务端其实创建了一个 socket (即 fd 或句柄);

  • 然后为该 socket 生成一个协作组,该协程组包括两个协程: 协程1-1,负责对 socket 进行读; 协程1-2,负责对 socket 进行写;这两个协程,一个读一个写互不影响,高效协作;

  • 当需要向客户端写消息时,不管是当前socket 请求的数据,还是从其他 socket 中读取的数据,必须通过协程组的管道(channel) 作为入口,然后协程1-2会从 channel 中读取数据然后写入到 socket 中。

最后,总结文中关键:

1、基于 http 长轮询方式实现的 IM 系统的单体架构中, server 节点是有状态的;

2、基于 http 长轮询发消息流程:消息到达 serer 后,先落库;若消息接收方在当前 server 节点,直接返回,否则需要将消息推送到目标 server 节点;

3、 基于 http 长轮询方式实现的 IM 系统,缓存中需要记录客户端连接的是哪一个 server 节点;

4、 在 http 长轮询模式中,不管消息接收方在线与否,server 节点接收消息后,都需要写 “离线表”;

5、 Go 语言通用的高效网络编程模型:每一条连接会有一个独立的协程组来维护;协程1-1,负责对 socket 进行读; 协程1-2,负责对 socket 进行写。

至此,“单体架构 IM 系统” 核心问题全部讲完了,你是否还记得如下关键点:

为什么要采用单体架构?

单体架构有怎样的优势?

单体架构的IM系统是怎样的?

单体架构 IM 系统的消息收发逻辑是如何实现的?

什么是 “信箱模型” ,有什么优势和缺点?

“信箱模型” 消息的实时性如何提升?

http 长轮询方式的两种落地方案:“定时器” 和 “时间轮” 如何实现?

上述问题都可从以下四篇文章中找到答案:

《单体架构 IM 系统之架构设计》

《单体架构 IM 系统之核心业务工作实现》

《单体架构 IM 系统之长轮询方案设计》

《单体架构 IM 系统之 Server 节点状态化分析》

分层架构 IM 系统的关键问题,后续文章马上更新跟进......

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/60654.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

让AI为你发声!Windows电脑快速部署ChatTTS文本转语音神器

文章目录 前言1. 下载运行ChatTTS模型2. 安装Cpolar工具3. 实现公网访问4. 配置ChatTTS固定公网地址 前言 嘿&#xff0c;朋友们&#xff01;今天我们来聊聊如何在Windows系统上快速搭建ChatTTS&#xff0c;一个超酷的开源文本转语音项目。更棒的是&#xff0c;我们还可以用Cp…

RSTP的配置

RSTP相对于STP在端口角色、端口状态、配置BPDU格式、配置BPDU的处理方式、快速收敛机制、拓扑变更机制和4种保护特性方面的详细改进说明&#xff1a; 端口角色&#xff1a; STP中定义了三种端口角色&#xff1a;根端口&#xff08;Root Port&#xff09;、指定端口&#xff0…

elementui el-table中给表头 el-table-column 加一个鼠标移入提示说明

前言 在使用el-table 表格中有些表格的表头需要加入一些提示&#xff0c;鼠标移入则出现提示&#xff0c;非常实用&#xff0c;我是通过el-table中的el-tooltip实现的&#xff0c;以下的效果预览 代码实现 <el-table ref"multipleTable" :data"data"…

ubuntu18.04 安装与卸载NCCL conda环境安装PaddlePaddle

cuda版本11.2 说明PaddlePaddle需要安装NCCL 1、Log in | NVIDIA Developer 登录官网 找到对应版本 官方提供了多种安装方式&#xff0c;本文使用Local installers (x86)本地安装 点击对应的版本下载如&#xff1a; nccl-local-repo-ubuntu1804-2.8.4-cuda11.2_1.0-1_amd6…

机器学习—决定下一步做什么

现在已经看到了很多不同的学习算法&#xff0c;包括线性回归、逻辑回归甚至深度学习或神经网络。 关于如何构建机器学习系统的一些建议 假设你已经实现了正则化线性回归来预测房价&#xff0c;所以你有通常的学习算法的成本函数平方误差加上这个正则化项&#xff0c;但是如果…

【Rust中的项目管理】

Rust中的项目管理 前言Package&#xff0c;Crate&#xff0c;Module &use &#xff0c;Path通过代码示例解释 Crate&#xff0c;Module &#xff0c;use&#xff0c;Path创建一个package&#xff1a;代码组织化skin.rs 中的代码struct & enum 相对路径和绝对路径引用同…

labview用sql server数据库存取数据到一个单元格

最近有一个项目上需要一个庞大的数据量&#xff0c;需要很多列&#xff0c;但是百度查了一下sqi server最多支持1024列&#xff0c;这一限制适用于大多数表类型&#xff0c;包括常规表&#xff0c;临时表和表变量&#xff0c;要注意的是如果超出这一限制可能会导致数据的完整性…

架构篇(04理解架构的演进)

目录 学习前言 一、架构演进 1. 初始阶段的网站架构 2. 应用服务和数据服务分离 3. 使用缓存改善网站性能 4. 使用应用服务器集群改善网站的并发处理能力 5. 数据库读写分离 6. 使用反向代理和CDN加上网站相应 7. 使用分布式文件系统和分布式数据库系统 8. 使用NoSQL和…

Unity学习笔记(4):人物和基本组件

文章目录 前言开发环境新增角色添加组件RigidBody 2D全局项目设置Edit 给地图添加碰撞体 总结 前言 今天不加班&#xff0c;有空闲时间。争取一天学一课&#xff0c;养成习惯 开发环境 Unity 6windows 11vs studio 2022Unity2022.2 最新教程《勇士传说》入门到进阶&#xff…

Java项目实战II基于Spring Boot的高校教师电子名片系统的设计与实现(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。 一、前言 在信息化教育日益普及的今天&#xff0…

数学几百年重大错误:将无穷多各异直线误为直线y=x

黄小宁 h定理&#xff1a;点集AB≌B的必要条件是A≌B。 证&#xff1a;若AB则A必可恒等变换地变为BA≌A&#xff0c;而恒等变换是保距变换。证毕。 直线Z&#xff1a;x-y0&#xff08;x的变域是x轴&#xff09;可放大&#xff08;拉伸&#xff09;变换为直线L&#xff08;不≌Z…

学习threejs,使用第一视角控制器FirstPersonControls控制相机

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;threejs gis工程师 文章目录 一、&#x1f340;前言1.1 ☘️第一视角控制器FirstPerson…

LabVIEW导入并显示CAD DXF文件图形 程序见附件

LabVIEW导入并显示CAD DXF文件图形 程序见附件 LabVIEW导入并显示CAD DXF文件图形 程序见附件 - 北京瀚文网星科技有限公司 LabVIEW广泛应用于自动化、数据采集、图形显示等领域。对于涉及CAD图形的应用&#xff0c;LabVIEW也提供了一些方法来导入和显示CAD DXF文件&#x…

数据结构---详解栈

一、栈的概念和结构 栈&#xff1a;⼀种特殊的线性表&#xff0c;其只允许在固定的⼀端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出LIFO&#xff08;Last In First Out&#xff09;的原则。 压栈&a…

Python Plotly 库使用教程

Python Plotly 库使用教程 引言 数据可视化是数据分析中至关重要的一部分&#xff0c;它能够帮助我们更直观地理解数据、发现潜在的模式和趋势。Python 提供了多种数据可视化库&#xff0c;其中 Plotly 是一个功能强大且灵活的库&#xff0c;支持交互式图表的创建。与静态图表…

怎么样绑定域名到AWS(亚马逊云)服务器

1&#xff0c;拿着你买的域名去亚马逊申请一个证书。申请证书分两种&#xff0c;一种是去亚马逊后台填域名手动申请 &#xff0c;另一种是通过API来申请&#xff0c;类似如下代码&#xff1a; 2、证验证书。有两种方式&#xff1a;一种是通过邮件&#xff0c;另一种去到域名提供…

Dubbo源码解析(三)

一、Dubbo整合Spring启动流程 Dubbo的使用可以不依赖Spring&#xff0c;但是生产环境中Dubbo都是整合到Spring中一起使用&#xff0c;所以本章就解析Dubbo整合Spring的启动流程 一、传统的xml解析方式 一、Dubbo配置解析流程 在Java 中&#xff0c;一切皆对象。在JDK 中使用…

【ubuntu】Geogebra

Geogebra 几何作图工具 是一款跨平台的几何作图工具软件&#xff0c; 目前已经覆盖了&#xff0c; windows&#xff0c;android&#xff0c; mac, linux 等操作系统。 Ubuntu 现状 Ubuntu 自带应用市场 Ubuntu 自带应用市场目前只有 Geogebra 4.0 版本&#xff0c; 不能画立…

Qt 编写插件plugin,支持接口定义信号

https://blog.csdn.net/u014213012/article/details/122434193?spm1001.2014.3001.5506 本教程基于该链接的内容进行升级&#xff0c;在编写插件的基础上&#xff0c;支持接口类定义信号。 环境&#xff1a;Qt5.12.12 MSVC2017 一、创建项目 新建一个子项目便于程序管理【…

MFC工控项目实例二十九主对话框调用子对话框设定参数值

在主对话框调用子对话框设定参数值&#xff0c;使用theApp变量实现。 子对话框各参数变量 CString m_strTypeName; CString m_strBrand; CString m_strRemark; double m_edit_min; double m_edit_max; double m_edit_time2; double …