BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测

BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测

目录

    • BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

1
2
3

4
5
6
7
8

基本介绍

MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测。基于贝叶斯(bayes)优化卷积神经网络-长短期记忆网络(CNN-LSTM)回归预测,BO-CNN-LSTM/Bayes-CNN-LSTM多输入单输出模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
3.运行环境matlab2020b及以上。

模型搭建

  • CNN-LSTM模型结合了CNN和LSTM的优点,CNN-LSTM网络模型如图1所示,本文使用的CNN-LSTM模型的第一部分是由卷积层和最大值组成的CNN部分池化层,对原始数据进行预处理并输入CNN卷积层,利用卷积核自适应提取生命特征,卷积层将遍历输入信息,将卷积核权重与局部序列进行卷积运算体管信息得到初步的特征矩阵,比原始序列数据(矩阵)更具表现力。
  • 本文使用的池化层是最大池化层,池化操作对提取的特征进行数据降维,避免模型过拟合,保留主要特征。最大池化层将前一个卷积层得到的特征矩阵作为输入,在这个矩阵上滑动一个池化窗口,在每一次滑动中取池化窗口的最大值,输出一个更具表现力的特征矩阵。
  • 池化后,连接一个 LSTM 层,提取相关向量由CNN构造成一个长期的时间序列作为LSTM的输入数据。卷积层将卷积层的数据展平(Flatten),模型中加入Flatten,将(height,width,channel)的数据压缩成一个长高宽通道的一维数组,然后我们可以添加直接密集层。
  • 对卷积池化数据压缩特征操作,多个卷积特征提取框架提取的特征融合或从输出层融合,全连接层聚合学习到的特征,激活函数使用Relu。
  • 通常,在模型训练过程中需要对超参数进行优化,为模型选择一组最优的超参数,以提高预测的性能和有效性。 凭经验设置超参数会使最终确定的模型超参数组合不一定是最优的,这会影响模型网络的拟合程度及其对测试数据的泛化能力。

8

  • 伪代码
    9

10

  • 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。

程序设计

  • 完整程序和数据下载方式(资源处直接下载):MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];%%  贝叶斯优化网络参数
bayesopt(fitness, optimVars, ...    % 优化函数,和参数范围'MaxTime', Inf, ...                      % 优化时间(不限制) 'IsObjectiveDeterministic', false, ...'MaxObjectiveEvaluations', 10, ...       % 最大迭代次数'Verbose', 1, ...                        % 显示优化过程'UseParallel', false);%%  得到最优参数
NumOfUnits       = BayesObject.XAtMinEstimatedObjective.NumOfUnits;       % 最佳隐藏层节点数
InitialLearnRate = BayesObject.XAtMinEstimatedObjective.InitialLearnRate; % 最佳初始学习率
L2Regularization = BayesObject.XAtMinEstimatedObjective.L2Regularization; % 最佳L2正则化系数
%% 创建混合CNN-LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"CNN-LSTM"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% CNN特征提取convolution2dLayer([FiltZise 1],32,'Padding','same','WeightsInitializer','he','Name','conv','DilationFactor',1);batchNormalizationLayer('Name','bn')eluLayer('Name','elu')averagePooling2dLayer(1,'Stride',FiltZise,'Name','pool1')% 展开层sequenceUnfoldingLayer('Name','unfold')% 平滑层flattenLayer('Name','flatten')% LSTM特征学习lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% LSTM输出lstmLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% CNNLSTM训练选项
% 批处理样本
% 最大迭代次数
%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59906.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【node模块】深入解读node:assert模块

🧑‍💼 一名茫茫大海中沉浮的小小程序员🍬 👉 你的一键四连 (关注 点赞收藏评论)是我更新的最大动力❤️! 📑 目录 🔽 前言1️⃣ 什么是node:assert模块?2️⃣ node:assert模块的核心…

JDBC学习记录

文章目录 一、JDBC简介1.1、 JDBC概念1.2、 JDBC本质1.3、 JDBC好处 二、JDBC快速入门2.1、 编写代码步骤2.2、 代码示例 三、JDBC API详解3.1、DriverManager3.1.1、注册驱动3.1.2、获取连接 3.2、Connection3.2.1、获取执行对象3.2.2、事务管理 3.3、Statement3.3.1、执行DDL…

Linux和,FreeRTOS 任务调度原理,r0-r15寄存器,以及移植freertos(一)

目录、 1、r0-r15寄存器,保护现场,任务切换的原理 2、freertos移植 3、freertos的任务管理。 一、前言 写这篇文章的目的,是之前面试官,刚好问到我,移植FreeRTOS 到mcu,需要做哪些步骤,当时回…

安利一款开源企业级的报表系统SpringReport

SpringReport是一款企业级的报表系统,支持在线设计报表,并绑定动态数据源,无需写代码即可快速生成想要的报表,可以支持excel报表和word报表两种格式,同时还可以支持excel多人协同编辑,后续考虑实现大屏设计…

css:基础

前言 我们之前其实也可以写出一个看起来算是一个网页的网页,为什么我们还要学css? CSS(Cascading Style Sheets)也叫层叠样式表,是负责美化的,我们之前说html就是一个骨架,css就可以用来美化网…

qt QCompleter详解

1、概述 QCompleter是Qt框架中的一个类,用于为文本输入提供自动完成功能。它可以与Qt的输入控件(如QLineEdit、QTextEdit等)结合使用,根据用户的输入实时过滤数据源,并在输入控件下方或内部显示补全建议列表。用户可以…

探索 Move 编程语言:智能合约开发的新纪元

目录 引言 一、变量的定义 二、整型 如何在Move中表示小数和负数? 三、运算符 as运算符 布尔型 地址类型 四、什么是包? 五、什么是模块? 六、如何定义方法? 方法访问权限控制 init方法 总结 引言 Move 是一种专为区…

ETLCloud异常问题分析ai功能

在数据处理和集成的过程中,异常问题的发生往往会对业务运营造成显著影响。为了提高ETL(提取、转换、加载)流程的稳定性与效率,ETLCloud推出了智能异常问题分析AI功能。这一创新工具旨在实时监测数据流动中的潜在异常,自…

遥控器工作核心技术以及传输信号算法详解!

一、遥控器传输信号算法 无线通信技术:无人机遥控器信号传输算法主要基于无线通信技术,通过特定的调制、编码和信号处理技术,将遥控器的操作指令转化为无线电信号,并传输给被控制设备。被控制设备接收到信号后,再将其…

Java中的线程安全问题(如果想知道Java中有关线程安全问题的基本知识,那么只看这一篇就足够了!)

前言:多线程编程已经广泛开始使用,其可以充分利用系统资源来提升效率,但是线程安全问题也随之出现,它直接影响了程序的正确性和稳定性,需要对其进行深入的理解与解决。 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨✨想要了解…

基于STM32设计的森林火灾监测系统

文章目录 一、前言1.1 项目介绍【1】项目开发背景【2】设计实现的功能【3】项目硬件模块组成【4】研究背景与意义 1.2 设计思路1.3 系统功能总结1.4 开发工具的选择【1】设备端开发【2】上位机开发 1.5 参考文献 二、部署华为云物联网平台2.1 物联网平台介绍2.2 开通物联网服务…

Webserver(4.9)本地套接字的通信

目录 本地套接字 本地套接字 TCP\UDP实现不同主机、网络通信 本地套接字实现本地的进程间的通信&#xff0c;类似的&#xff0c;一般采用TCP的通信流程 生成套接字文件 #include<arpa/inet.h> #include<stdio.h> #include<stdlib.h> #include<unistd.h&…

第十五届蓝桥杯C/C++B组题解——数字接龙

题目描述 小蓝最近迷上了一款名为《数字接龙》的迷宫游戏&#xff0c;游戏在一个大小为N N 的格子棋盘上展开&#xff0c;其中每一个格子处都有着一个 0 . . . K − 1 之间的整数。游戏规则如下&#xff1a; 从左上角 (0, 0) 处出发&#xff0c;目标是到达右下角 (N − 1, N …

jmeter常用配置元件介绍总结之安装插件

系列文章目录 1.windows、linux安装jmeter及设置中文显示 2.jmeter常用配置元件介绍总结之安装插件 3.jmeter常用配置元件介绍总结之取样器 jmeter常用配置元件介绍总结之安装插件 1.下载插件2.安装插件管理包3.不用插件管理包&#xff0c;直接官网插件下载安装 1.下载插件 jm…

InnoDB 存储引擎<六> Redo log

目录 关于Redo Log 的一些其余问题 小结 本篇承接自InnoDB存储引擎<五>的内容 InnoDB 存储引擎&#xff1c;五&#xff1e; 关于Redo Log 的一些其余问题 4.不同⽇志类型对应了哪些操作&#xff1f; 分析过程&#xff1a; 1.⽇志类型总体可以分为三⼤类&#xff0c;…

Linux挖矿病毒(kswapd0进程使cpu爆满)

一、摘要 事情起因:有台测试服务器很久没用了&#xff0c;突然监控到CPU飙到了95以上&#xff0c;并且阿里云服务器厂商还发送了通知消息&#xff0c;【阿里云】尊敬的xxh: 经检测您的阿里云服务&#xff08;ECS实例&#xff09;i-xxx存在挖矿活动。因此很明确服务器中挖矿病毒…

变电站接地电阻监测装置-输电铁塔接地电阻监测装置:实时监测,预防故障

变电站接地电阻监测装置 接地电阻对电力系统的安全和稳定性至关重要&#xff0c;但在高压环境和极端气候下&#xff0c;接地系统可能出现性能下降&#xff0c;增加故障和跳闸的风险。传统的人工检测方法常常无法及时发现这些问题&#xff0c;并且操作繁琐。为此&#xff0c;我…

练习LabVIEW第四十三题

学习目标&#xff1a; 模拟红绿灯&#xff0c;红灯亮十秒&#xff0c;绿灯亮五秒&#xff0c;交替&#xff0c;并用波形图将波形显示 开始编写&#xff1a; 前面板 两个指示灯&#xff0c;一个红色&#xff0c;一个绿色&#xff0c;一个波形图&#xff1b; 程序框图 创建…

MySQL45讲 第十一讲 怎么给字符串字段加索引?

文章目录 MySQL45讲 第十一讲 怎么给字符串字段加索引&#xff1f;一、引言二、前缀索引&#xff08;一&#xff09;概念与创建方式&#xff08;二&#xff09;数据结构与存储差异&#xff08;三&#xff09;确定前缀长度的方法 三、前缀索引对覆盖索引的影响四、其他索引创建方…

STM32CUBEIDE FreeRTOS操作教程(八):queues多队列

STM32CUBEIDE FreeRTOS操作教程&#xff08;八&#xff09;&#xff1a;queues多队列 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件&#xff0c;不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例&#…