2024年大厂AI大模型面试题精选与答案解析

前言

随着AI市场,人工智能的爆火,在接下来的金九银十招聘高峰期,各大科技巨头和国有企业将会对AGI人才的争夺展开一场大战,为求职市场注入了新的活力。

为了助力求职者在面试中展现最佳状态,深入理解行业巨头的选拔标准变得至关重要。尤其是对于AGI(Artificial General Intelligence,通用人工智能)领域的求职者而言,掌握一手的面试真题,不仅能让你洞悉面试官的考察重点,还能帮助你针对性地提升自己的技能和知识储备,让你在众多候选人中独树一帜。

鉴于此,我们精心整理了今年热门大厂的AGI面试题集,涵盖从基础知识到前沿技术的全方位内容,包括但不限于百度、阿里、字节跳动等知名企业的精选题目。无论你是在为即将到来的面试做准备,还是希望通过系统学习来完善自己的AGI技术体系,这份资料都将是你宝贵的资源。

在这里插入图片描述

由于文章篇幅原因,下面就给大家展示最高频的50道面试题,大家也可以尝试着自己回答一下这些问题,顺便就给自己查漏补缺了。有需要完整面试题+答案解析的朋友,可以下滑到文末领取!!!

  1. 简述GPT和BERT的区别
  2. 讲一下GPT系列模型是如何演进的?
  3. 为什么现在的大模型大多是decoder-only的架构?
  4. 讲一下生成式语言模型的工作机理
  5. 哪些因素会导致LLM的偏见?
  6. LLM中的因果语言建模与掩码语言建模有什么区别?
  7. 如何减轻LLM中的幻觉现象?
  8. 解释ChatGPT的零样本和少样本学习的概念
  9. 你了解大型语言模型中的哪些分词技术?
  10. 如何评估大语言模型(LLMs)的性能?
  11. 如何缓解LLMs重复读问题?
  12. 请简述Transformer基本原理
  13. 为什么Transformer的架构需要多头注意力机制?
  14. transformers需要位置编码吗?
  15. transformer中,同一个词可以有不同的注意力权重吗?
  16. Wordpiece与BPE之间的区别是什么?
  17. 有哪些常见的优化LLMs输出的技术?
  18. GPT-3拥有的1750亿参数,是怎么算出来的?
  19. 温度系数和top-p,top-k参数有什么区别?
  20. 为什么transformer块使用LayerNorm而不是BatchNorm?
  21. 介绍一下postlayernorm和prelayernorm的区别
  22. 什么是思维链(CoT)提示?
  23. 你觉得什么样的任务或领域适合用思维链提示?
  24. 你了解ReAct吗,它有什么优点?
  25. 解释一下langchainAgent的概念
  26. langchain有哪些替代方案?
  27. langchaintoken计数有什么问题?如何解决?
  28. LLM预训练阶段有哪几个关键步骤?
  29. RLHF模型为什么会表现比SFT更好?
  30. 参数高效的微调(PEFT)有哪些方法?
  31. LORA微调相比于微调适配器或前缀微调有什么优势?
  32. 有了解过什么是稀疏微调吗?
  33. 训练后量化(PTQ)和量化感知训练(QAT)与什么区别?
  34. LLMs中,量化权重和量化激活的区别是什么?
  35. AWQ量化的步骤是什么?
  36. 介绍一下GPipe推理框架
  37. 矩阵乘法如何做张量并行?
  38. 请简述下PPO算法流程,它跟TRPO的区别是什么?
  39. 什么是检索增强生成(RAG)?
  40. 自前主流的中文向量模型有哪些?
  41. 为什么LLM的知识更新很困难?
  42. RAG和微调的区别是什么?
  43. 大模型一般评测方法及基准是什么?
  44. 什么是KVCache技米,它真体是如何实现的?
  45. DeepSpeed推理对算子融合做了哪些优化?
  46. 简述一下FlashAttention的原理
  47. MHA,GQA,MQA三种注意力机制的区别是什么?
  48. 请介绍一下微软的ZeRO优化器
  49. PagedAttention的原理是什么,解决了LLM中的什么问题?
  50. 什么是投机采样技术,请举例说明?

即使你目前尚未有面试计划,定期复习和研究这些面试题,也能帮助你保持对AGI领域最新动态的敏感度,为未来的职业道路奠定坚实的基础。

在这里插入图片描述

在这里插入图片描述

完整面试题领取方式:扫描下方二维码即可

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59344.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nico,从零开始干掉Appium,移动端自动化测试框架实现

开头先让我碎碎念一波~去年差不多时间发布了一篇《 UiAutomator Nico,一个基于纯 adb 命令实现的安卓自动化测试框》(https://testerhome.com/topics/37042), 由于种种原因 (详见此篇帖子) 当时选择了用纯 adb 命令来实现安卓自动…

RTP和RTCP的详细介绍及其C代码示例

RTP和RTCP的详细介绍及其C代码示例 RTP和RTCP简介RTP协议详解RTCP协议详解RTP和RTCP之间的关系C代码示例RTP和RTCP简介 RTP(Real-time Transport Protocol,实时传输协议)和RTCP(Real-time Transport Control Protocol,实时传输控制协议)是流媒体传输中常用的两个协议。R…

国内能用的Docker镜像源【2024最新持续更新】

国内能用的Docker镜像源【2024最新持续更新】 Docker 镜像加速列表(2024年11月已更新)配置方式1:临时使用配置方式2:长久有效 在国内使用 Docker 的朋友们,可能都遇到过配置镜像源来加速镜像拉取的操作。然而&#xff…

队列(Queue)的介绍与实现

文章目录 队列队列的概念及结构 队列的实现初始化队列销毁队列队尾入队列队头出队列获取队列头部元素检测队列是否为空获取队列中有效元素个数 队列 队列的概念及结构 队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表。队列遵…

3.1 快速启动Flink集群

文章目录 1. 环境配置2. 本地启动3. 集群启动4. 向集群提交作业4.1 提交作业概述4.2 添加打包插件4.3 将项目打包4.4 在Web UI上提交作业4.5 命令行提交作业 在本实战中,我们将快速启动Apache Flink 1.13.0集群,并在Hadoop集群环境中提交作业。首先&…

[sa-token]StpUtil.getLoginId

闲聊 一般情况下,我们想用uid,可能需要前端将uid传过来,或者将token传来,然后我们进行识别。 用了sa-token之后,可以使用StpUtil.getLoginId()方法获取当前会话的用户id 代码展示 例如以下代码: public Res…

算法实现 - 快速排序(Quick Sort) - 理解版

文章目录 算法介绍算法分析核心思想三个版本运行过程挖坑法Hoare 原版前后指针法 算法稳定性和复杂度稳定性时间复杂度平均情况O(nlogn)最差情况O( n 2 n^2 n2) 空间复杂度 算法介绍 快速排序是一种高效的排序算法,由英国计算机科学家C. A. R. Hoare在1960年提出&a…

算法【Java】—— 动态规划之斐波那契数列模型

动态规划 动态规划的思路一共有五个步骤: 状态表示:由经验和题目要求得出,这个确实有点抽象,下面的题目会带大家慢慢感受状态标识状态转移方程初始化:避免越界访问 dp 表,所以在进行填表之前我们要预先填…

SpringBoot学生请假系统:从零到一的构建过程

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常…

json-server的使用(根据json数据一键生成接口)

一.使用目的 在前端开发初期,后端 API 可能还未完成,json-server 可以快速创建模拟的 RESTful API,帮助前端开发者进行开发和测试。 二.安装 npm install json-server //局部安装npm i json-server -g //全局安装 三.使用教程 1.准备一…

【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型

一、介绍 车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操…

【Redis】浅析Redis大Key

目录 1、什么是Redis大Key 2、大 Key 是怎么产生的 3、大 Key 导致的问题 4、如何快速找到 Redis 大 Key 5、大 Key 优化策略 6、总结 我们在使用 Redis 的过程中,如果未能及时发现并处理 Big keys(下文称为“大Key”),可能…

Rocky DEM tutorial3_Vibrating Screen_振荡筛

tutorial3_Vibrating Screen_振荡筛 文章目录 tutorial3_Vibrating Screen_振荡筛0. 目的1. 模型介绍2. 模型设置2.1 Physics设置2.2 导入几何2.3 创建一个进口的几何面2.4 定义运动 Motion frame2.5 材料设置,保持默认即可2.6 设置材料间的相互作用 materials inte…

小林渗透入门:burpsuite+proxifier抓取小程序流量

目录 前提: 代理: proxifier: 步骤: bp证书安装 bp设置代理端口: proxifier设置规则: proxifier应用规则: 结果: 前提: 在介绍这两个工具具体实现方法之前&#xff0…

阿里云-防火墙设置不当导致ssh无法连接

今天学网络编程的时候,看见有陌生ip连接,所以打开了防火墙禁止除本机之外的其他ip连接: 但是当我再次用ssh的时候,连不上了才发现大事不妙。 折腾了半天,发现阿里云上可以在线向服务器发送命令,所以赶紧把2…

深度学习基础(2024-11-02更新到图像尺寸变换 与 裁剪)

1. 名词解释 FFN FFN : Feedforward Neural Network,前馈神经网络馈神经网络是一种基本的神经网络架构,也称为多层感知器(Multilayer Perceptron,MLP)FFN 一般主要是包括多个全连接层(FC)的网络&#xff…

【初阶数据结构篇】链式结构二叉树(二叉链)的实现(感受递归暴力美学)

文章目录 须知 💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力! 👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗&#xff1…

2024年第六届全球校园人工智能算法精英大赛——【算法挑战赛】钢材表面缺陷检测与分割 比赛复盘

引言 钢材表面缺陷检测在钢铁生产中是确保质量的关键环节,传统的人工检测方式难以满足大 规模工业生产的需求。近年来,基于深度学习的缺陷检测方法因其高效性和准确性受到广泛关 注。然而,现有的深度学习模型如U-Net虽具备较好的分割性能&am…

【网络】自定义协议——序列化和反序列化

> 作者:დ旧言~ > 座右铭:松树千年终是朽,槿花一日自为荣。 > 目标:了解什么是序列化和分序列,并且自己能手撕网络版的计算器。 > 毒鸡汤:有些事情,总是不明白,所以我不…

Darknet 连接教程

本篇文章仅供学习,严禁用于非法用途。 1,前言: 首先明确一点,Darknet真没那么神奇,虽然有些技术文章的确很有水平,对于前端学习,软件开发以及PHP和一些服务器端维护都有许多文章,但…