linux线程 | 同步与互斥 | 互斥(下)

        前言:本篇文章主要讲述linux线程的互斥的知识。 讲解流程为先讲解锁的工作原理, 再自己封装一下锁并且使用一下。 做完这些就要输出一堆理论性的东西, 但博主会总结两条结论!!最后就是讲一下死锁。 那么, 废话不多说, 我们开始学习吧!

        ps:本节内容建议先了解一下数据不一致问题以及锁的使用的友友们进行观看哦。

目录

锁的原理

锁的封装

接口

测试

可重入VS线程安全

概念

结论

死锁的概念

要如何解决死锁问题呢? 


        我们回忆一下上一节, 上一节我们知道了:为了提高并发度, 所以有了多线程。 为了使用多线程, 我们就有了线程之间的资源共享。 而资源共享又引入了多线程的访问数据不一致的问题。 因为数据不一致问题, 我们又引入了互斥锁, 而互斥锁需要考虑临界资源和临界区以及原子性和互斥性的概念。——这些就是上一节的大体内容。 现在看本节的内容吧!

锁的原理

        我们现在来重新思考一下一个问题——tickets--为什么不是原子的? 因为汇编会变成三条汇编语句。 我们认为一条汇编语句已经是计算机中最基本的指令了。什么是原子的? 这里可以下一个定义: 我们认为, 一条汇编, 就是原子的。

        其实, cpu这个硬件资源是很笨的, 我们让他去move, sub, add。 他就按照我们的指令去做。 这里面就有一个问题, 就是cpu很笨, 我们让他干什么, 他就干什么。 但是cpu为什么知道我们让他去干什么呢? 是因为我们对应的芯片当年在制作的时候, 他得在自己的芯片的硬件电路离, 一定要以硬件的方式设计出一系列能够让硬件识别的基本指令。 这个基本指令叫做芯片的指令集(区别于代码, 就是我们的汇编move, sub, add这些)

        为了实现互斥操作, 大多数体系结构提供了swap和exchange指令。 这些指令比如swap,那么他就是一条利用汇编把寄存器里面的值和内存里面的值做交换。 由于只有一条指令, 所以就保证了交换的动作是原子的。 即便是多处理器平台(多个cpu), 我们需要知道的是, 即便我们的cpu有很多块, 但是我们的cpu和内存之间的总线只有一套。所以这么多cpu通过总线访问内存的时候就会通过总线里面的硬件——仲裁器, 来决定内存由哪一个cpu来访问。 也就是说所有的cpu在访问内存的时候还是串行的, 只是在计算的时候大家可以在双cpu或者多cpu下进行计算。

        现在看下面一串伪代码, 这串伪代码是mutex_lock的伪汇编:

move $0, %al
xchgb %al, mutex
if (al寄存器的内容 > 0){return 0;
} else 挂起等待;
goto lock;

这串伪代码怎么理解, 下面博主带友友们理解一下: 

  •         图中是一块cpu和一块物理内存。 物理内存中有一块锁, 锁里面的数据就代表锁!我们设置为1.
  •         然后第一条语句是move 0 al。意思就是将0赋值给al变量(al此时已经被加载到寄存器)。
  •         第二条语句是xchgb al mutex, 意思就是将al 和 mutex中的数据调换。这也是传统意义上申请锁的动作。然后调换后就是下图:                                                                                                    
  •         第三条语句就是对al寄存器里面的数据进行判断。 如果寄存器数据大于0。 那么就申请成功, 返回零。 如果小于零, 就申请失败, 挂起等待。

        但是!这是只有一个线程的情况, 我们可以一步一步地向后执行指令。 当有多个线程的时候就要考虑线程切换的问题了。 下面是多线程的情况(注意:寄存器 != 寄存器的内容):

  •         假设一开始线程1执行第一条语句, 将al赋值为了零。 然后线程1就要被切换走了。
  •         那么此时线程1就要将寄存器中的al数据记录下来,同时将下一步执行哪一步记录下来。这叫带走上下文! 
  •         然后呢线程2来了, 线程2开始将数据加载到寄存器, 然后al 置为0.但是线程2运气好, 他没有被切换走, 然后他就继续执行xchgb操作。 成功的将al的数据0和mutex的数据1完成了交换! 此时现成2终于要被切换走了!那么现成2就要将自己的上下文带走!!!
  •         线程2切换走了之后,线程1回来执行xchgb, 但是此时mutex的值已经是0了,线程1交换al 和 mutex相当于什么都没有交换到! 然后执行判断, 对不起, 判断失败, 线程1需要挂起等待。
  •         那么线程2回来之后继续执行判断, 注意, 此时原本的mutex的那个1就在线程2的上下文中!那么线程2判断结果一定会正确, 那么线程2就申请成功了锁! 

        所以, 综上我们其实就能感觉出来, 上面的mutex_lock函数那哪一步最重要? 是不是就是xchgb这一步最重要。 谁先交换成功, 谁就相当于拿到了锁!!

锁的封装

接口


接下来我们对锁进行一下封装。 让锁的接口不再暴露在外面, 用户直接使用我们的接口:

 首先我们创建一个类,这个类对锁进行了一下封装:


class Mutex //创建锁的类
{
public:private:pthread_mutex_t* _lock;
};

然后定义这个类的构造函数, 析构函数;以及加锁解锁函数:


class Mutex
{
public://构造函数Mutex(pthread_mutex_t* lock):_lock(lock){} //加锁void Lock(){pthread_mutex_lock(_lock);}//解锁void Unlock(){pthread_mutex_unlock(_lock);}//析构函数~Mutex(){}private:pthread_mutex_t* _lock;
};

        然后我们创建一个类似于“开关”的对象。 这个对象只要创建, 就代表我们的加锁;这个对象一小会就代表我们的解锁!如下这里面封装了我们上面刚刚定义的Mutex类的对象。


class LockGuard
{
public:private:Mutex _mutex;
};  

        那么如何实现这种“资源创建即初始化”的效果呢?我们可以在它的构造函数初始化_mutex成员变量并且使用_mutex的方法lock。然后析构函数就是调用_mutex的unlock

class LockGuard
{
public:LockGuard(pthread_mutex_t* lock):_mutex(lock){_mutex.Lock();}//~LockGuard(){_mutex.Unlock();}
private:Mutex _mutex;
};  

测试

有了上面的代码, 我们可以拿出我们之前写的买票的代码(不知道的友友请看之前一篇文章:linux线程 | 把握线程的知识要点 | 同步与互斥-CSDN博客, 也可以看下面代码):


#include<iostream>
using namespace std;
#include<pthread.h>
#include<vector>
#include<unistd.h>
#include<string.h>
#include"LockGuard.h"#define NUM 5  //创建多个执行流, NUM为执行流个数using namespace std;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;int* p = nullptr;
//线程的数据信息。 
struct threadData
{
public:threadData(int number, pthread_mutex_t* mutex){threadname = "thread-" + to_string(number);lock = mutex;}public:string threadname;pthread_mutex_t* lock;
};int tickets = 1000;
void* getTicket(void* args)
{threadData* td = static_cast<threadData*>(args);const char* name = td->threadname.c_str();while (true){pthread_mutex_lock(td->lock); //加锁, 申请锁成功才能往后执行, 否则阻塞等待。if (tickets > 0){usleep(1000);printf("who=%s, get a ticket: %d\n", name, tickets);tickets--;pthread_mutex_unlock(td->lock); }else {pthread_mutex_unlock(td->lock); break;} usleep(13);}return nullptr;
}int main()
{   pthread_mutex_init(&lock, nullptr);vector<pthread_t> tids;vector<threadData*> thread_datas;//我们创建多个执行流, 为了能够验证每个线程都有一个独立的栈结构for (int i = 0; i < NUM; i++){pthread_t tid;threadData* td = new threadData(i, &lock);thread_datas.push_back(td); pthread_create(&tid, nullptr, getTicket, td);tids.push_back(tid);}for (auto e : tids){pthread_join(e, nullptr);}// pthread_mutex_destroy(&lock);return 0;
}

        然后我们如何改动上面的代码呢? 就是换一下GetTickets函数里面的锁的创建方法, 改成直接一个LockGurard类型的对象:

void* getTicket(void* args)
{threadData* td = static_cast<threadData*>(args);const char* name = td->threadname.c_str();while (true){{ //这个花括号是为了规定LockGuard对象的作用域LockGuard lockguard(&lock); //定义临时的lockguard对象。 RAII风格的锁if (tickets > 0){usleep(1000);printf("who=%s, get a ticket: %d\n", name, tickets);tickets--;}else {break;} }usleep(13);}return nullptr;
}

然后运行:

        可以看到, 和原本创建锁的结果一样。

        

可重入VS线程安全

概念

        如果多个线程同时访问一段代码的时候, 不管如何运作, 那么我们的线程都不会出现问题, 那么就称为线程安全如果我们的代码访问某些全局变量, 然后导致其他线程出现问题了, 这个就叫做线程不安全。

        重入就是同一个函数多个执行流调用, 正在被一个执行流调用的时候其他的执行流又进来了。 然后在这种情况下仍然没有出现问题的函数称为可重入函数否则称为不可重入函数。     

        线程安全和重入这两个概念是一样的概念吗?不是的, 因为重入不可重入描述的是函数的特点, 而线程安全描述的是多线程并发的特点。目前, 我们遇到的大部分函数都是不可重入的。一个函数可重入或者不可重入, 其实并没有褒贬之分,他只是在描述这个函数的特征。但是!对于不可重入的函数我们的多执行流要用, 就必须要加锁了!!!

        因为这里有一个结论性的话:一般情况下, 一个函数是不可能重入的,那么在多线程执行下, 就有可能出现问题。 但是, 如果一个函数是可重入的, 那么在多线程的调用下, 它一定也是线程安全的。  

结论

常见的线程不安全的情况:

  •         不保护共享变量的函数。
  •         函数状态随着被调用, 状态发生变化的函数。
  •         返回指向静态变量指针的函数。
  •         调用线程不安全函数的函数。

 常见的线程安全的情况:

  •         每个线程对于全局变量或者静态变量只读!
  •         类或者接口原子的!
  •         多个线程之间的切换不会导致接口结果产生二义性!

常见不可重入的情况:

  •         IO
  •         malloc/free函数等等函数
  •         可重入函数体内使用了静态数据结构 

可重入与线程安全的联系(重要)

  •         函数如果是可重入的, 那么多线程调用这个函数的过程, 就是线程安全的!
  •         函数是不可重入的, 那么一般不可多线程使用, 有可能引发线程安全问题。
  •         如果一个函数中使用了全局变量。那么这个函数既不是线程安全的, 也不是可重入的。

可重入与线程安全的区别:

  •         可重入是线程安全函数的一种
  •         可重入一定是线程安全的,但是线程安全, 不一定是可重入的。

上面最最重要的就是两个结论:

  •         线程安全是描述线程并发的问题, 可重入是描述函数特点的问题。
  •         不可重入函数在多线程访问时可能会出现线程安全问题, 但是一个函数如果可重入, 他不会有线程安全问题。

死锁的概念

        首先什么是死锁呢? ——一般在多线程访问的时候, 我们一方面持有自己的锁, 还申请其他人的锁。我们双方既不释放自己的锁, 而且要求释放对方的锁, 并且还不强占对方的锁, 只是申请对方的锁。 这就会导致死锁的问题。 以现象定义就是在多线程的情况下, 因为锁的使用导致多线程的代码都不往后执行了。

        那么问题是, 一把锁可不可能产生死锁呢?——是可以的。当我们的同一把锁被申请两次的时候,就会产生死锁,就如同下面的代码:

运行的时候就会阻塞住了:

        我们称一个线程持有一把锁, 另一个线程持有另一把锁。 他们两个却又申请对方的锁进而导致进入一种永久等待状态的情况我们称之为死锁。 就比如张三和李四买棒棒糖, 但是张三和李四兜里只有五毛钱, 棒棒糖要一块钱, 所以张三就让李四把五毛钱给他, 他给两个人买一根棒棒糖。 那李四不愿意, 李四就和张三说把五毛钱给他, 他给两个人买棒棒糖。 这两个小朋友一不释放自己手中的五毛钱, 而还一直要对方的五毛钱。这种情况叫做张三和李四陷入了死锁问题!

        那么产生死锁的必要条件有什么呢? ——》只要产生死锁, 这四个条件一定产生!!!

  •         1:互斥条件——》一个资源一次只能被一个执行流使用。——前提
  •         2:请求与保持条件——》所谓死锁就是在互相保持自己的资源, 同时还在申请着对方的资源。——原则
  •         3:不剥夺条件——就类似于张三想要对方的五毛钱,但是他不去抢。 一个执行流以获得的资源在未使用完之前,不能强行掠夺。——原则
  •         4:循环等待条件——》若干执行流之间形成的一种头尾相连的循环等待资源的关系。 就类似于张三等待李四, 李四等待张三。——重要条件

要如何解决死锁问题呢? 

        我们知道, 对于死锁来说有四个必要的条件。 也就是说死锁必须有着这四个条件。 那么我们如果想要破坏死锁, 那么是不是只需要破坏掉其中某一个条件就可以了? 

所以方法就是:

  •         破坏请求与保持——》我们可以使用trylock, 它是lock的非阻塞版本, 很容易就能破坏请求与保持原则。
  •         破坏不剥夺——》只需要将对方的锁释放掉, 就能破坏掉不剥夺条件。
  •         破坏循环与等待条件——》破坏掉这个后, 申请锁的时候按照顺序申请锁!一般加锁的顺序保持一致!

  ——————以上就是本节全部内容哦, 如果对友友们有帮助的话可以关注博主, 方便学习更多知识哦!!!    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/57155.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

什么是 Idempotence 以及它在哪里使用?

大家好&#xff0c;我是锋哥。今天分享关于【什么是 Idempotence 以及它在哪里使用&#xff1f;】面试题&#xff1f;希望对大家有帮助&#xff1b; 什么是 Idempotence 以及它在哪里使用&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Idempotence&am…

【C++STL】list的基本介绍与使用方式

✨ Blog’s 主页: 白乐天_ξ( ✿&#xff1e;◡❛) &#x1f308; 个人Motto&#xff1a;他强任他强&#xff0c;清风拂山冈&#xff01; &#x1f525; 所属专栏&#xff1a;C深入学习笔记 &#x1f4ab; 欢迎来到我的学习笔记&#xff01; 一、list的介绍 文档内容以及大致翻…

ESP32-IDF 非易失存储 NVS

目录 零、前言一、基本介绍1、配置结构体1.1 nvs_entry_info_t 2、常用 API2.1 nvs_flash_init2.2 nvs_flash_init_partition2.3 nvs_flash_init_partition_ptr2.4 nvs_flash_erase2.5 nvs_flash_erase_partition2.6 nvs_flash_erase_partition_ptr2.7 nvs_flash_generate_keys…

element plus中menu菜单技巧

我在使用element plus的menu&#xff08;侧边栏&#xff09;组件的过程中遇到了一些问题&#xff0c;就是menu编写样式和路由跳转&#xff0c;下面给大家分享以下&#xff0c;我是怎么解决的。 1.页面效果 我要实现的网站布局是这样的&#xff1a; 侧边栏折叠以后的效果&#…

python爬虫快速入门之---Scrapy 从入门到包吃包住

python爬虫快速入门之—Scrapy 从入门到包吃包住 文章目录 python爬虫快速入门之---Scrapy 从入门到包吃包住一、scrapy简介1.1、scrapy是什么?1.2、Scrapy 的特点1.3、Scrapy 的主要组件1.4、Scrapy 工作流程1.5、scrapy的安装 二、scrapy项目快速入门2.1、scrapy项目快速创建…

详解equals底层原理

equals 方法是 Java 中用于比较两个对象是否“相等”的方法。在 Java 中&#xff0c;每个类都继承自 java.lang.Object 类&#xff0c;而 equals 方法正是定义在 Object 类中的一个方法。默认情况下&#xff0c;Object 类的 equals 方法比较的是两个对象的内存地址&#xff08;…

SQL 多表联查

SQL JOIN (w3school.com.cn) SQL join用于根据两个或多个表中的列之间的关系&#xff0c;从这些表中查询数据。 之前跟着老师学数据库的时候学过&#xff0c;最近又在比较频繁的使用&#xff0c;再复习一下。 Person表&#xff1a; Id_P &#xff1a;居民编号。主键 …

大数据开发基于Hadoop+springboot平台的岗位推荐系统

文章目录 前言项目介绍技术介绍功能介绍核心代码数据库参考 系统效果图文章目录 前言 文章底部名片&#xff0c;获取项目的完整演示视频&#xff0c;免费解答技术疑问 项目介绍 随着网络科学技术不断的发展和普及化&#xff0c;用户在寻找适合自己的信息管理系统时面临着越来…

成功解决pycharm软件中按住Ctrl+点击指定函数却不能跳转到对应库中的源代码

成功解决pycharm软件中按住Ctrl点击指定函数却不能跳转到对应库中的源代码 目录 解决问题 解决方法 解决问题 在pycharm软件中按住Ctrl点击指定函数却不能跳转到对应库中的源代码 解决方法

探索秘境:如何使用智能体插件打造专属的小众旅游助手『小众旅游探险家』

文章目录 摘要引言智能体介绍和亮点展示介绍亮点展示 已发布智能体运行效果智能体创意想法创意想法创意实现路径拆解 如何制作智能体可能会遇到的几个问题快速调优指南总结未来展望 摘要 本文将详细介绍如何使用智能体平台开发一款名为“小众旅游探险家”的旅游智能体。通过这…

个人健康系统|个人健康数据管理系统|基于小程序+java的个人健康数据管理系统设计与实现(源码+数据库+文档)

个人健康数据管理系统 目录 基于小程序java的个人健康数据管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍&#xff1a;✌️大厂码农|毕设布道师…

重构案例:将纯HTML/JS项目迁移到Webpack

我们已经了解了许多关于 Webpack 的知识&#xff0c;但要完全熟练掌握它并非易事。一个很好的学习方法是通过实际项目练习。当我们对 Webpack 的配置有了足够的理解后&#xff0c;就可以尝试重构一些项目。本次我选择了一个纯HTML/JS的PC项目进行重构&#xff0c;项目位于 GitH…

web3学习-区块链基础知识

1.1 区块链技术简史 block chain 点对点的分布式交易系统 比特币协议并不是图灵完备的。 以太坊协议加入了智能合约&#xff0c;智能合约是以太坊协议与比特币协议的最大区别&#xff08;图灵完备&#xff09; 1.2、区块链设计哲学 去中心化 由于没有中心化的数据库作为…

记录一个容易混淆的 Spring Boot 项目配置文件问题

记录一个容易混淆的 Spring Boot 项目配置文件问题 去年&#xff0c;我遇到了这样一个问题&#xff1a; 在这个例子中&#xff0c;由于密码 password 以 0 开头&#xff0c;当它被 Spring Boot 的 bean 读取时&#xff0c;前导的 0 被自动去掉了。这导致程序无法正确读取密码。…

网盘直链下载神器NDM

工具介绍 ​Neat Download Manager分享一款网盘不限速神器,安装步骤稍微有一点繁琐,但实际体验下载速度飞快,个人实际体验还是非常不错的 NDM是一款免费且强大的下载工具。可以帮助你下载各种文件&#xff0c;还能够在多任务下载中保持出色的速度及其稳定性 通过网盘分享的文…

【MySQL核心面试题】MySQL 核心 - Explain 执行计划详解!

欢迎关注公众号 【11来了】&#xff08;文章末尾即可扫码关注&#xff09; &#xff0c;持续 中间件源码、系统设计、面试进阶相关内容 在我后台回复 「资料」 可领取 编程高频电子书&#xff01; 在我后台回复「面试」可领取 30w 字的硬核面试笔记&#xff01; 感谢你的关注&…

MySQL【知识改变命运】10

联合查询 0.前言1.联合查询在MySQL里面的原理2.练习一个完整的联合查询2.1.构造练习案例数据2.2 案例&#xff1a;⼀个完整的联合查询的过程2.2.1. 确定参与查询的表&#xff0c;学⽣表和班级表2.2.2. 确定连接条件&#xff0c;student表中的class_id与class表中id列的值相等2.…

wordpress 子比主题美化 四宫格 多宫格 布局插件

wordpress 主题美化 四宫格 多宫格 布局插件&#xff08;只在子比主题上测试过&#xff0c;其它主题没测试&#xff09; A5资源网四宫格布局插件是一个功能丰富的WordPress插件,专为创建自适应的四宫格布局而设计。这个插件具有以下主要特点: 灵活的布局: 支持1到8个宫格的自定…

Springboot整合knife4j生成文档

前言 在开发过程中&#xff0c;接口文档是很重要的内容&#xff0c;用于前端对接口的联调&#xff0c;也用于给其他方使用。但是手写相对比较麻烦。 当然也有swagger之类的&#xff0c;但是界面没有那么友好。 官网&#xff1a; 整合步骤 整合依赖 需要根据版本进行&…

如何使用 pnpm 进行打补丁patch操作?推荐两个方法

前言 作为一个前端开发者&#xff0c;我们每天都在和各种各样的库和依赖打交道。node_modules 目录中存放着我们项目的各种依赖。我们有时需要对其中的一些依赖进行修改&#xff0c;比如修复某个 bug 或者增加某些自定义功能。这时候&#xff0c;给 node_modules 打补丁就显得…