FiBiNET模型实现推荐算法

1. 项目简介

A031-FiBiNET模型项目是一个基于深度学习的推荐系统算法实现,旨在提升推荐系统的性能和精度。该项目的背景源于当今互联网平台中,推荐算法在电商、社交、内容分发等领域的广泛应用。推荐系统通过分析用户的历史行为和兴趣偏好,预测用户可能感兴趣的产品或内容,从而提供个性化推荐。传统的推荐算法面临数据稀疏性、冷启动问题等挑战,深度学习模型因其强大的特征学习能力,成为解决这些问题的有效途径。

本项目使用的模型为FiBiNET(Feature Interaction Bilinear Network),该模型通过引入双线性特征交互机制和注意力机制,有效提升了模型在处理高维稀疏数据时的表现。FiBiNET的核心思想是通过不同的特征组合方式,挖掘潜在的特征交互关系,从而提高推荐的准确性。项目主要应用于大规模电商平台的商品推荐场景,能够根据用户的浏览记录、购买历史等数据,生成精准的商品推荐列表。

在这里插入图片描述

2.技术创新点摘要

FiBiNET模型具有以下技术创新点:

  1. 双线性特征交互:FiBiNET的核心创新点是双线性特征交互机制(Bilinear Interaction Layer),通过不同的特征组合方式来挖掘潜在的特征交互关系。与传统的线性模型不同,双线性层可以捕捉到更高阶的特征交互信息,从而提高推荐的准确性。
  2. 注意力机制:FiBiNET结合了特征注意力机制(Feature Attention Network),这一机制使模型能够根据输入样本的不同,动态地为特征赋予不同的重要性。通过引入SE(Squeeze-and-Excitation)网络,模型能够自适应地为不同的特征分配权重,重点关注对当前任务重要的特征,从而有效排除无关的噪声。
  3. 高低层次特征融合:FiBiNET采用了高低融合策略,将高层次和低层次特征进行结合,以提升特征的丰富性和多样性。这种融合策略使模型能够像人类一样同时关注整体和细节,既捕捉到全局特征,又不忽视局部重要信息。
  4. 权重共享机制:该模型的另一创新点在于权重共享机制。权重矩阵在多个计算中共享,降低了参数的数量,有效地缓解了数据稀疏性的问题。通过共享权重,FiBiNET模型能够在较小的数据集上依然保持较好的泛化性能。
  5. 动态特征选择:FiBiNET还通过动态特征选择提升了模型的适应性。不同的输入样本会使用不同的权值矩阵,从而根据特定样本的特点进行自适应的特征选择,这一过程类似于人类在处理复杂信息时聚焦重要内容的能力。

3. 数据集与预处理

在A031-FiBiNET模型项目中,数据集主要来源于电子商务平台用户的行为记录,具体包括用户的浏览、点击、收藏、加购及购买等行为数据。这些数据具有典型的高维稀疏性和非线性特征,同时也存在类别不平衡问题,即少部分商品或行为数据较为频繁,而大部分数据较为稀疏。此外,用户的行为特征往往是动态变化的,因此对模型的特征挖掘和泛化能力提出了较高的要求。

数据预处理流程的第一步是数据清洗,包括去除缺失值和重复数据,确保输入数据的质量。接着是数据归一化处理,对于连续型特征(如商品价格、用户活跃度等),通过归一化将其缩放到相同范围,以加速模型的收敛并提高训练效率。

在特征工程部分,项目采用了类别特征编码(如商品ID、用户ID等),利用嵌入层将这些高维稀疏的离散特征转化为低维稠密向量表示,减少了维度灾难并提升了模型的特征表达能力。此外,还加入了特征交互和组合策略,通过FiBiNET模型中的双线性层对不同特征进行交互建模,以挖掘潜在的高阶特征关系。

为了应对数据的不平衡问题,项目引入了负采样策略,通过减少负样本数量来平衡正负样本比例。同时,在部分特征中引入了数据增强技术,模拟不同场景下用户的行为变化,进一步提升模型的鲁棒性和泛化能力。

4. 模型架构

FiBiNET(Feature Importance and Bilinear Interaction Network)模型主要包括三个核心部分:特征注意力网络(Feature Attention Network)、双线性特征交互网络(Bilinear Interaction Layer),以及全连接层。它通过结合特征重要性和双线性特征交互机制,提升模型对特征组合的建模能力。模型具体结构如下:

  1. 特征注意力网络:引入了SENet(Squeeze-and-Excitation Network)机制,通过对每个输入特征进行注意力加权,动态调整每个特征的权重。特征注意力的计算公式为:

s = σ ( W 2 ⋅ ReLU ( W 1 ⋅ f i n ) ) s = \sigma(W_2 \cdot \text{ReLU}(W_1 \cdot f_{in})) s=σ(W2ReLU(W1fin))

  1. 其中,fin是输入特征,W1和W2是可训练的权重矩阵,σ表示Sigmoid激活函数,输出的s为特征的重要性权重。
  2. 双线性特征交互层:这一层通过双线性形式对不同的特征进行交互建模。假设输入特征向量为xix_ixi和xjx_jxj,其交互结果通过以下公式计算:

h i j = x i T W x j h_{ij} = x_i^T W x_j hij=xiTWxj

  1. 其中,WWW是可学习的双线性权重矩阵。该层通过捕捉特征之间的高阶关系,有效提高推荐的精度。
  2. 全连接层:经过特征交互后的输出向量被输入到多个全连接层中进行进一步的非线性变换,并最终通过Softmax或Sigmoid函数输出预测结果。

2. 模型的整体训练流程

FiBiNET的训练流程包括数据输入、特征预处理、模型训练和模型评估等步骤:

  • 数据输入与预处理:首先对输入数据进行清洗、归一化和特征工程,确保输入特征的合理性。
  • 前向传播:输入特征通过注意力网络调整权重后,进入双线性特征交互层,进行不同特征之间的组合和交互,最后经过全连接层计算输出。
  • 损失函数:模型采用二元交叉熵损失函数(Binary Cross-Entropy)作为目标函数,其公式为:

L = − 1 N ∑ i = 1 N [ y i log ⁡ ( p i ) + ( 1 − y i ) log ⁡ ( 1 − p i ) ] L = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)] L=N1i=1N[yilog(pi)+(1yi)log(1pi)]

  • 其中,yi为实际标签,pi为模型预测的概率。
  • 评估指标:评估模型的指标主要包括AUC(Area Under Curve)和Logloss。AUC衡量模型的分类效果,Logloss则评估模型预测的误差。

5. 核心代码详细讲解

1. 特征注意力机制 (Feature Attention Network)

暂时无法在飞书文档外展示此内容

解释:
  1. SENetLayer 初始化

    1. num_fields 是输入特征的数量,reduction_ratio 是减少维度的比例。通过这些参数,模型可以动态调整输入特征的重要性。
    2. 这里定义了一个两层的全连接网络,通过非线性激活函数 ReLU 进行特征缩放和增强。
  2. forward 函数

    1. torch.mean(x, dim=-1):对输入的特征进行均值操作,代表特征的压缩(Squeeze)。
    2. self.excitation(Z):将压缩后的特征通过 excitation 网络,得到各个特征的重要性权重。
    3. x * A.unsqueeze(-1):对输入特征按权重进行重新加权,使得每个特征根据其重要性得到不同的权重。

2. 双线性特征交互层 (Bilinear Interaction Layer)

暂时无法在飞书文档外展示此内容

解释:
  1. Bilinear Interaction 初始化

    1. field_sizeembedding_size 是模型的输入维度和嵌入向量维度,bilinear_weights 是可学习的双线性权重矩阵。
  2. forward 函数

    1. 使用嵌套循环,遍历输入特征的每个 pair(成对的特征)。
    2. torch.sum(x[:, i] * torch.matmul(x[:, j], self.bilinear_weights[i, j]), dim=1):对于每一对特征进行双线性运算,得到两个特征之间的交互信息。
    3. 最后将所有特征交互结果通过 torch.stack 堆叠在一起作为输出。

3. 模型训练与评估

暂时无法在飞书文档外展示此内容

解释:
  1. train_model 函数

    1. model.train():设置模型为训练模式,启用 dropout 和 batch normalization。
    2. optimizer.zero_grad():每次迭代清零梯度,避免梯度累加。
    3. loss.backward():计算当前批次的反向传播,更新梯度。
    4. optimizer.step():使用优化器更新模型参数。
    5. 每个 epoch 后输出当前的平均损失,用于监控模型的训练进展。

6. 模型优缺点评价

优点:

  1. 双线性特征交互机制:相比于传统的线性特征交互模型,FiBiNET通过双线性层捕捉高阶特征交互,有效提升了模型对复杂特征关系的建模能力,特别适用于高维稀疏数据的推荐场景。
  2. 特征注意力机制:通过SENet机制动态调整每个特征的重要性,使得模型能够自适应地关注对当前任务重要的特征,从而减少噪声的干扰,提高推荐的精度。
  3. 高效特征融合:FiBiNET结合了高低层次的特征融合,使得模型不仅能捕捉到全局特征,还能更好地利用局部特征,提高模型的泛化能力。
  4. 灵活性强:模型的架构可以灵活应用于不同的推荐系统场景中,具有良好的扩展性,适用于CTR预估、个性化推荐等任务。

缺点:

  1. 计算复杂度高:双线性特征交互层和特征注意力机制引入了大量参数,尤其是在处理高维稀疏数据时,模型的计算复杂度和内存占用较高,训练时间长。
  2. 对数据依赖强:FiBiNET的效果依赖于高质量、充足的数据,在数据稀缺或噪声较多的情况下,模型性能可能受到较大影响。
  3. 特征选择过度依赖注意力机制:尽管注意力机制有效,但如果注意力分配不准确,可能会忽略一些对任务有用的特征,导致模型性能下降。

改进方向:

  1. 模型结构优化:可以尝试将其他先进的特征交互机制(如Self-Attention)与双线性交互结合,以进一步增强特征的表达能力。
  2. 超参数调整:通过调优模型中的超参数,如双线性层的维度、SENet的缩放比率等,寻找更合适的参数配置以提高模型的效率和效果。
  3. 数据增强:引入更多的数据增强方法,特别是在用户行为数据的增强上,如时间序列建模或生成对抗网络(GAN)生成更多样本数据,以缓解数据稀缺问题。

↓↓↓更多热门推荐:

CNN模型实现mnist手写数字识别
fasterRCNN模型实现飞机类目标检测

点赞收藏关注,免费获取本项目代码和数据集,点下方名片↓↓↓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/56012.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django学习笔记十三:优秀案例学习

Django CMS 是一个基于 Django 框架的开源内容管理系统,它允许开发者轻松地创建和管理网站内容。Django CMS 提供了一个易于使用的界面来实现动态网站的快速开发,并且具有丰富的内容管理功能和多种插件扩展。以下是 Django CMS 的一些核心特性和如何开始…

opencv的相机标定与姿态解算

首先我们要知道四个重要的坐标系 世界坐标系相机坐标系图像成像坐标系图像像素坐标系 坐标系之间的转换 世界坐标系——相机坐标系 从世界坐标系到相机坐标系,涉及到旋转和平移(其实所有的运动也可以用旋转矩阵和平移向量来描述)。绕着不…

最新Prompt预设词指令教程大全ChatGPT、AI智能体(300+预设词应用)

使用指南 直接复制在AI工具助手中使用(提问前) 可以前往已经添加好Prompt预设的AI系统测试使用(可自定义添加使用) SparkAi系统现已支持自定义添加官方GPTs(对专业领域更加专业,支持多模态文档&#xff0…

同三维T80001EHK 4K超高清HDMI编码器

【系列介绍】 同三维T80001EHK 4K超高清HDMI编码器 4K超高清编码器(采集盒)是专业的高清音视频编码产品,只需要占用较小的带宽,即可获得高清晰度的视频信号。该产品采用H.265编码格式,可同时对视频音频进行编码。输出…

【万字长文】Word2Vec计算详解(二)Skip-gram模型

【万字长文】Word2Vec计算详解(二)Skip-gram模型 写在前面 本篇介绍Word2Vec中的第二个模型Skip-gram模型 【万字长文】Word2Vec计算详解(一)CBOW模型 markdown行 9000 【万字长文】Word2Vec计算详解(二)S…

<Project-8.1 pdf2tx-MM> Python Flask 用浏览器翻译PDF内容 2个翻译引擎 繁简中文结果 从P8更改

更新 Project Name:pdf2tx (P6) Date: 5oct.24 Function: 在浏览器中翻译PDF文件 Code:https://blog.csdn.net/davenian/article/details/142723144 升级 Project Name: pdf2tx-mm (P8) 7oct.24 加入多线程,分页OCR识别,提高性能与速度 使…

5G NR UE初始接入信令流程

文章目录 5G NR UE初始接入信令流程 5G NR UE初始接入信令流程 用户设备向gNB-DU发送RRCSetupRequest消息。gNB-DU 包含 RRC 消息,如果 UE 被接纳,则在 INITIAL UL RRC MESSAGE TRANSFER 消息中包括为 UE 分配的低层配置,并将其传输到 gNB-CU…

【OpenCV】基础操作学习--实现原理理解

读取和显示图像 基本操作 cv2.imread(filename , flags):文件中读取图像,从指定路径中读取图像,返回一个图像数组(NumPy数组) filename:图像文件的路径flags:指定读取图像的方式 cv2.IMREAD_COL…

linux线程 | 线程的概念

前言:本篇讲述linux里面线程的相关概念。 线程在我们的教材中的定义通常是这样的——线程是进程的一个执行分支。 线程的执行粒度, 要比进程要细。 我们在读完这句话后其实并不能很好的理解什么是线程。 所以, 本节内容博主将会带友友们理解什么是线程&a…

代码随想录算法训练营第四十六天 | 647. 回文子串,516.最长回文子序列

四十六天打卡,今天用动态规划解决回文问题,回文问题需要用二维dp解决 647.回文子串 题目链接 解题思路 没做出来,布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串&#xff0…

2024.10月7~10日 进一步完善《电信资费管理系统》

一、新增的模块: 在原项目基础上,新增加了以下功能: 1、增加AspectJ 框架的AOP 异常记录和事务管理模块。 2、增加SpringMVC的拦截器,实现登录 控制页面访问权限。 3、增加 Logback日志框架,记录日志。 4、增加动态验…

Hunuan-DiT代码阅读

一 整体架构 该模型是以SD为基础的文生图模型,具体扩散模型原理参考https://zhouyifan.net/2023/07/07/20230330-diffusion-model/,代码地址https://github.com/Tencent/HunyuanDiT,这里介绍 Full-parameter Training 二 输入数据处理 这里…

netdata保姆级面板介绍

netdata保姆级面板介绍 基本介绍部署流程下载安装指令选择设置KSM为什么要启用 KSM?如何启用 KSM?验证 KSM 是否启用注意事项 检查端口启动状态 netdata和grafana的区别NetdataGrafananetdata各指标介绍总览system overview栏仪表盘1. CPU2. Load3. Disk…

3.使用条件语句编写存储过程(3/10)

引言 在现代数据库管理系统中,存储过程扮演着至关重要的角色。它们是一组为了执行特定任务而编写的SQL语句,这些语句被保存在数据库中,可以被重复调用。存储过程不仅可以提高数据库操作的效率,还可以增强数据的安全性和一致性。此…

RPA技术的定义与原理

RPA(Robotic Process Automation)即机器人流程自动化,是一种利用软件机器人或机器人工具来自动执行重复性、规则性和可预测性的业务流程的技术。以下是对RPA技术的详细介绍: 一、RPA技术的定义与原理 RPA技术通过模拟人工操作&a…

【redis-06】redis的stream流实现消息中间件

redis系列整体栏目 内容链接地址【一】redis基本数据类型和使用场景https://zhenghuisheng.blog.csdn.net/article/details/142406325【二】redis的持久化机制和原理https://zhenghuisheng.blog.csdn.net/article/details/142441756【三】redis缓存穿透、缓存击穿、缓存雪崩htt…

关于Linux查看系统及版本信息的命令lsb_release命令以及Centos7中将redis服务写入systemctl服务

一、关于Linux查看系统及版本信息的命令lsb_release命令 linux查看系统是centos还是ubuntu,之前一直使用uname -a以及cat /etc/issue。但在某个服务器上发些这些都不行。有一个更好用的命令:lsb_release -a。如执行时提示-bash: lsb_release: 未找到命令…

Vscode+Pycharm+Vue.js+WEUI+django火锅(三)理解Vue

新创建的Vue项目里面很多文件,对于新手,老老实实做一下了解。 1.框架逻辑 框架的逻辑都是相通的,花点时间理一下就清晰了。 2.文件目录及文件 创建好的vue项目下,主要的文件和文件夹要先认识一下,并与框架逻辑对应起…

计算机毕业设计 校内跑腿业务系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

dayu_widgets-简介

前言: 越来越多的人开始使用python来做GUI程序,市面上却很少有好的UI控件。即使有也是走的商业收费协议,不敢使用,一个不小心就收到法律传票。 一、原始开源项目: 偶然在GitHub上发现了这个博主的开源项目。https://github.com/phenom-films…