Linux性能调优技巧

目录

  • 前言
  • 1. CPU性能优化
    • 1.1 调整CPU调度策略
    • 1.2 合理分配多核处理
  • 2. 内存性能优化
    • 2.1 调整内存分配策略
    • 2.2 缓存和分页优化
  • 3. 磁盘I/O性能优化
    • 3.1 使用合适的I/O调度器
    • 3.2 磁盘分区和文件系统优化
  • 4. 网络性能优化
    • 4.1 优化网络参数
    • 4.2 调整网络拥塞控制算法
  • 5. 系统监控与优化策略
    • 5.1 使用监控工具
    • 5.2 周期性调整与优化
  • 结语

前言

在Linux系统中,性能优化是确保服务器稳定、高效运行的关键环节。无论是应用程序的响应时间,还是系统资源的有效利用,优化的过程都至关重要。特别是在云服务器场景下,随着用户的需求不断增长和应用规模的扩大,如何通过性能调优技术提升服务器的处理能力,减少资源消耗,成为了每个系统管理员和开发人员需要关注的问题。本篇文章将详细介绍Linux性能调优的技巧,帮助大家掌握一些常见但实用的优化方法。

1. CPU性能优化

CPU是系统性能的核心。对于Linux系统来说,提升CPU性能可以通过多种方式进行,诸如调节CPU调度策略、管理多核处理、优化进程优先级等。
在这里插入图片描述

1.1 调整CPU调度策略

Linux系统内置了多种CPU调度器,诸如CFS(完全公平调度器)和RT(实时调度器)。CFS适合大多数通用系统,能够平衡负载和任务响应。而实时调度器则用于需要精确时间控制的场景,如嵌入式系统或金融应用。

通过chrt命令,我们可以对某些关键进程进行优先级的调整,从而保证这些进程获得更多的CPU资源。比如,在高负载场景下,如果某个进程需要更多的CPU时间,可以将其优先级调高,确保其得到及时响应。

1.2 合理分配多核处理

对于多核处理器,合理的核分配可以显著提升系统性能。通过taskset命令,管理员可以将特定的进程绑定到某些CPU核心上,减少核心间的切换开销。例如,数据库服务器可以将查询处理进程绑定到特定的CPU核心,减少由于核心切换导致的缓存失效问题。

同时,在高并发场景下,可以根据应用程序的特点调整内核线程的并发度。例如,使用sysctl配置参数kernel.sched_min_granularity_ns,可以微调内核的时间片调度策略,减少长时间运行任务对其他任务的影响。

2. 内存性能优化

内存性能直接关系到应用程序的运行速度和系统的稳定性。针对内存性能的优化包括内存分配策略调整、虚拟内存管理和内存缓存优化等。

2.1 调整内存分配策略

Linux内核通过虚拟内存管理来提高内存利用率。默认情况下,系统会在物理内存不足时使用交换空间(swap),但这会显著降低系统性能。可以通过调整vm.swappiness参数来减少交换空间的使用。例如,vm.swappiness的默认值为60,这意味着当内存使用率达到60%时,系统将开始使用swap。将其调低到10或更小的值,可以有效减少系统对swap的依赖。

此外,/proc/sys/vm/overcommit_memory文件控制了内存的分配策略。通过调整该文件的值,我们可以控制系统是否允许进程申请超出物理内存限制的内存。例如,对于高性能计算场景,可以设置为2,从而严格限制内存的分配,避免系统崩溃。

2.2 缓存和分页优化

Linux内存管理中的一大特点是广泛使用缓存。通过合理管理页缓存和目录缓存,可以提高磁盘I/O性能。在高负载服务器上,可以使用echo 3 > /proc/sys/vm/drop_caches命令手动清理缓存,以释放被文件系统占用的内存。

同时,可以通过调整dirty_ratiodirty_background_ratio来优化内存中的脏数据处理策略。dirty_ratio决定了当内存中脏页占比达到一定比例时,系统开始强制将脏数据写入磁盘,而dirty_background_ratio则是在后台写入脏数据时的比例。这两个参数的调整可以减少大规模文件写操作对系统的影响。

3. 磁盘I/O性能优化

磁盘I/O操作通常是系统性能的瓶颈。优化磁盘I/O可以显著提高系统的整体响应速度,尤其是在数据库等依赖大量磁盘操作的应用中。

3.1 使用合适的I/O调度器

Linux系统提供了多种I/O调度器,常见的包括noopdeadlinecfq。不同的调度器适合不同的应用场景。对于SSD固态硬盘,noop调度器因其简单性和直接性通常是最佳选择,而对于传统机械硬盘,deadline调度器则可以通过减少请求的等待时间,提升读取性能。

可以通过echo命令动态修改调度器,例如:

echo deadline > /sys/block/sda/queue/scheduler

根据应用的不同需求,选择合适的I/O调度器可以显著改善磁盘性能。

3.2 磁盘分区和文件系统优化

对磁盘进行合理的分区和选择适合的文件系统也是提升磁盘I/O性能的重要手段。对于大文件读写场景,使用XFS文件系统能够提供更高效的数据处理能力,而对于小文件频繁读写,ext4文件系统则表现更佳。

同时,通过调整文件系统挂载选项,比如使用noatime选项可以避免系统在每次文件访问时更新访问时间,减少不必要的写操作,进一步提高性能。

4. 网络性能优化

在现代应用场景中,网络性能常常是系统整体性能的瓶颈。特别是在云服务器环境中,优化网络性能对提升应用响应速度和减少延迟至关重要。

4.1 优化网络参数

可以通过调整Linux网络协议栈中的一些参数来优化网络性能。/etc/sysctl.conf文件中包含了一些关键的网络参数。例如,通过调整net.core.somaxconn可以增加系统允许的最大连接数,从而提升并发处理能力。此外,通过优化tcp_tw_reusetcp_tw_recycle参数,可以加快TCP连接的回收速度,减少系统中的TIME_WAIT状态。

4.2 调整网络拥塞控制算法

Linux内核支持多种网络拥塞控制算法,最常用的是cubicbbrcubic适用于大多数网络环境,而bbr则是Google开发的一种高效的拥塞控制算法,在高带宽和高延迟网络中表现优秀。可以通过以下命令启用bbr

sysctl net.ipv4.tcp_congestion_control=bbr

在高流量场景下,选择合适的拥塞控制算法可以有效提升网络传输速度。

5. 系统监控与优化策略

性能调优离不开对系统的实时监控。通过监控工具,管理员可以识别出系统中的瓶颈并进行针对性优化。

5.1 使用监控工具

Linux系统中有许多强大的监控工具,比如tophtopiostatvmstat等。tophtop可以监控系统的CPU和内存使用情况,而iostat可以用来分析磁盘I/O性能,vmstat则适合用于虚拟内存的监控。通过这些工具,管理员可以实时掌握系统的资源使用情况,定位性能瓶颈。

5.2 周期性调整与优化

系统调优不仅仅是一次性操作,而是一个持续的过程。在不同的负载和应用场景下,系统的性能瓶颈可能会发生变化。管理员应该定期进行性能测试,并根据测试结果不断调整优化策略,确保系统在不同场景下都能够稳定高效地运行。

结语

Linux系统性能调优是一个复杂而系统化的过程。通过调整CPU调度策略、内存管理方式、磁盘I/O优化以及网络参数调整,系统管理员可以显著提升系统的响应速度和资源利用率。然而,调优并不是一蹴而就的,系统的负载和应用环境会不断变化,管理员需要持续监控并根据需求进行优化。希望本文提供的调优技巧能够帮助大家在实际工作中更好地优化Linux系统的性能,为企业应用的高效运行提供有力保障。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/55668.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

20款奔驰CLS300升级原厂抬头显示HUD 23P智能辅助驾驶 触摸屏人机交互系统

以下是为您生成的一份关于 18 款奔驰 CLS 老款改新款的改装文案: 18 款奔驰 CLS 老款改新款:科技升级,畅享极致驾驶体验 在汽车改装的世界里,每一次的升级都是对卓越的追求。今天,让我们一同探索 18 款奔驰 CLS 老款改…

arm-伪指令

在汇编语言中,特别是在与ARM架构相关的汇编语言中,ADR、ADRL、LDR 和 NOP 是具有特定功能的指令或伪指令。下面是对这些术语在ARM汇编语言中的详细解释: LDR(Load Register) 定义:LDR是一个指令&#xff…

代码随想录训练营第48天|单调栈

739. 每日温度 class Solution { public:vector<int> dailyTemperatures(vector<int>& temperatures) {stack<int> st;st.push(0);int ntemperatures.size();vector<int> res(n,0);for(int i1; i<n; i){while(!st.empty()&&temperatur…

重塑数字时代的生存法则:IT部门的转型与重生

在当下大环境低迷&#xff0c;经济寒冬之下&#xff0c;某数字化转型大群的一则令人震惊的消息如巨石投湖&#xff0c;激起了层层涟漪——某集团公司宣布全面裁撤IT团队&#xff0c;无一幸免。这一决定&#xff0c;不仅让群内的IT同仁们愕然失色&#xff0c;更引发了行业内外对…

记一次教学版内网渗透流程

信息收集 如果觉得文章写的不错可以共同交流 http://aertyxqdp1.target.yijinglab.com/dirsearch dirsearch -u "http://aertyxqdp1.target.yijinglab.com/"发现 http://aertyxqdp1.target.yijinglab.com/joomla/http://aertyxqdp1.target.yijinglab.com/phpMyA…

Python网络编程:开启你的网络之旅

引言 你有没有想过&#xff0c;为什么我们能在几秒钟内从世界的另一端获取信息&#xff1f;这背后&#xff0c;正是网络编程的魔力&#xff01;在这个数字化的时代&#xff0c;掌握网络编程不仅能让你在技术上游刃有余&#xff0c;还能为你的职业生涯增添一笔亮丽的色彩。今天…

知识图谱入门——3:工具分类与对比(知识建模工具:Protégé、 知识抽取工具:DeepDive、知识存储工具:Neo4j)

在知识图谱构建的过程中&#xff0c;针对不同的任务和需求&#xff0c;我们可以使用多种工具。为了帮助你快速选择合适的工具&#xff0c;本文将常用工具按类别进行分类介绍&#xff0c;并对比其优缺点&#xff0c;方便你在不同场景中做出最佳选择。 文章目录 1. 知识建模工具…

Windows Ubuntu下搭建深度学习Pytorch训练框架与转换环境TensorRT

Windows Ubuntu下搭建深度学习Pytorch训练框架与转换环境TensorRT JetBrains2024&#xff08;IntelliJ IDEA、PhpStorm、RubyMine、Rider……&#xff09;安装包Anaconda Miniconda安装.condarc 文件配置镜像源查看conda的配置和源(channel)自定义conda虚拟环境路径conda常用命…

el-pagination组件封装

组件使用 源代码&#xff1a; <script setup> import Pagination from /components/pagination/index.vue import {ref} from "vue";const pageNum ref(1) const pageSize ref(10) const total ref(120)function loadData() {// 加载数据 } </script>…

H.264编解码工具 - NVIDIA CUDA

一、简介 NVIDIA CUDA编解码是一项采用NVIDIA图形处理器(GPU)来加速视频编码和解码的技术。CUDA(Compute Unified Device Architecture)是一种并行计算平台和编程模型,允许开发者使用GPU来进行通用计算。 优点: 加速编解码速度:CUDA编解码利用GPU的并行处理能力,可以…

RabbitMQ 工作方式详解

RabbitMQ 是一个开源的消息代理软件&#xff0c;它实现了高级消息队列协议&#xff08;AMQP&#xff09;。RabbitMQ 允许应用程序或系统以异步的方式交换数据&#xff0c;从而提高了系统的可扩展性和容错性。本文将详细介绍 RabbitMQ 的工作方式&#xff0c;包括其核心概念、消…

【Unity】unity安卓打包参数(个人复习向/有不足之处欢迎指出/侵删)

1.Texture Compression 纹理压缩 设置发布后的纹理压缩格式 Use Player Settings:使用在播放器设置中设置的纹理压缩格式 ETC&#xff1a;使用ETC格式&#xff08;兼容&#xff09; ETC2&#xff1a;使用ETC2格式&#xff08;很多设备不支持&#xff09; ASTC&#xff1a;使用…

腾讯云服务器上使用Nginx部署的静态网站打开速度慢的原因分析及优化解决方案

目录 前言1. 网站打开速度慢的原因分析1.1 服务器配置不足1.2 网络延迟1.3 Nginx配置不合理1.4 静态资源未优化 2. 网站速度的测试与分析2.1 使用浏览器开发者工具分析2.2 在线工具测试 3. 网站优化的具体方法3.1 服务器配置优化3.2 CDN加速与DNS优化3.3 优化Nginx配置3.3.1 启…

Django一分钟:DRF ViewSet烹饪指南,创建好用的视图集

本文将介绍django视图集的内部实现&#xff0c;并带你重写部分代码自己组装强大且趁手的视图集&#xff0c;以满足自定义的业务需求&#xff0c;避免编写大量重复代码。 一、基础知识 Django Rest framework框架允许你将一组相关视图的逻辑组合到一个类中&#xff0c;也就是我…

PCIe6.0 AIC金手指和板端CEM连接器信号完整性设计规范

先附上我之前写的关于PCIe5.0金手指的设计解读&#xff1a; PCIe5.0的Add-in-Card(AIC)金手指layout建议&#xff08;一&#xff09;_pcie cem-CSDN博客 PCIe5.0的Add-in-Card(AIC)金手指layout建议&#xff08;二&#xff09;_gnd bar-CSDN博客 首先&#xff0c;相较于PCI…

《深度学习》【项目】OpenCV 发票识别 透视变换、轮廓检测解析及案例解析

目录 一、透视变换 1、什么是透视变换 2、操作步骤 1&#xff09;选择透视变换的源图像和目标图像 2&#xff09;确定透视变换所需的关键点 3&#xff09;计算透视变换的变换矩阵 4&#xff09;对源图像进行透视变换 5&#xff09;对变换后的图像进行插值处理 二、轮廓检测…

Python | Leetcode Python题解之第454题四数相加II

题目&#xff1a; 题解&#xff1a; class Solution:def fourSumCount(self, A: List[int], B: List[int], C: List[int], D: List[int]) -> int:countAB collections.Counter(u v for u in A for v in B)ans 0for u in C:for v in D:if -u - v in countAB:ans countAB…

P2480 [SDOI2010] 古代猪文

原题链接 简化题意&#xff1a; 给定 n , G n,G n,G&#xff0c;求 G ∑ d ∣ n C n d m o d 999911659 G^{\sum_{d|n}C_{n}^{d}}mod_{}999911659 G∑d∣n​Cnd​mod​999911659。 发现指数可能非常大&#xff0c;而模数为质数&#xff0c;此时可以考虑运用扩展欧拉定理来化…

网约班车升级手机端退票

背景 作为老古董程序员&#xff0c;不&#xff0c;应该叫互联网人员&#xff0c;因为我现在做的所有的事情&#xff0c;都是处于爱好&#xff0c;更多的时间是在和各行各业的朋友聊市场&#xff0c;聊需求&#xff0c;聊怎么通过IT互联网 改变实体行业的现状&#xff0c;准确的…

k8s实战-2

k8s实战-2 一、Deployment1.多副本2.扩缩容3.自愈&故障转移4.滚动更新5.版本回退 二、Service1.ClusterIP2.NodePort 总结 一、Deployment Deployment 是 k8s 中的一个资源对象&#xff0c;用于管理应用的副本&#xff08;Pods&#xff09;。它的主要作用是确保集群中运行…