什么是CPU、GPU、NPU?(包懂+会)

目录

举例子

CPU:主厨

GPU:大量的厨房助理

NPU:面包机

总结

讲理论

CPU(中央处理器)

GPU(图形处理单元)

NPU(神经网络处理单元)

对比分析


举例子

CPU:主厨

CPU就像是厨房中的主厨。主厨非常灵活,可以处理各种不同的任务——洗菜、切菜、炒菜、做汤等。虽然主厨做任何事情都很擅长,但他通常一次只能专注于一两道菜,所以处理复杂的宴会时速度可能会比较慢。

  • 特点:CPU的优势在于通用性,可以做很多不同的任务,但并不是每个任务都特别快。当工作量较大时,CPU的处理速度会受限,因为它一次只能处理有限的任务。

GPU:大量的厨房助理

GPU就像是一群厨房助理。虽然助理们没有主厨那样精通每个细节,但他们可以同时进行大量简单的重复工作,例如切菜、剁肉、摆盘等。这在需要处理大量相同类型的工作时非常高效,比如宴会上的大量菜品准备。

  • 特点:GPU的强项是并行处理,特别擅长做大量类似的任务。虽然它们不如主厨那么灵活,但在处理大量相同的任务时表现非常好。

NPU:面包机

NPU就像厨房中的专用设备,例如一台面包机。面包机只能用来做面包,它不能切菜、也不能炒菜,但是它做面包特别高效,而且节能。如果你需要做大量的面包,面包机比主厨或助理做得更快、更省力。

  • 特点:NPU专门用于处理神经网络相关的任务,效率很高,但只能胜任特定的计算工作。它的设计就是为了极高效、低能耗地完成特定的AI计算。

总结

  • CPU(主厨):能做各种任务,灵活性强,但同时处理大量任务时速度有限。
  • GPU(厨房助理):擅长同时处理大量类似任务,在并行任务中效率极高。
  • NPU(面包机):专为特定任务设计,处理AI计算非常高效,但用途较为单一。

讲理论

CPU(中央处理器)

CPU(Central Processing Unit)是计算机的核心处理单元,通常被称为计算机的大脑。它负责执行计算机中的所有指令,处理基本的算术、逻辑运算、控制操作等任务。CPU主要由以下几部分组成:

  • 控制单元(Control Unit):负责解释指令并控制其他硬件部件执行操作。
  • 算术逻辑单元(ALU, Arithmetic Logic Unit):负责执行算术和逻辑运算,如加法、减法、与、或等。
  • 寄存器(Registers):用于存储临时数据和指令操作的中间结果。

工作原理:CPU依次从内存中读取指令,解码并执行,然后将结果存储回内存或寄存器。其主要特点是通用性强,适合处理各种任务,但在并行处理和复杂数据计算(如图像、视频处理)上,效率相对较低。

应用场景:CPU被广泛应用于通用计算任务,如办公软件、网页浏览、编程计算等。

GPU(图形处理单元)

GPU(Graphics Processing Unit)是专为图形计算设计的处理器,尤其擅长并行处理大量的数据。最早,GPU的主要功能是加速图形渲染,尤其是3D图形的生成,但随着其并行计算能力的增强,GPU已经在科学计算、人工智能等领域获得广泛应用。

  • 并行处理:与CPU不同,GPU有成百上千个小核心,可以同时处理大量相同类型的任务。它们适合处理诸如矩阵计算、图像处理等需要大量并行计算的任务。
  • 架构特点:GPU的架构非常适合处理需要高带宽和高吞吐量的数据处理任务,比如在图像渲染中,成千上万的像素需要同时被处理。

工作原理:GPU使用大量的小型处理核心来执行并行计算,通常通过CUDA(NVIDIA)或OpenCL等框架开发大规模并行计算程序。

应用场景:GPU主要用于图像处理、视频编解码、深度学习、机器学习等需要大量并行计算的任务中。

NPU(神经网络处理单元)

NPU(Neural Processing Unit)是一种专门用于加速神经网络计算的处理器。随着深度学习和神经网络技术的发展,NPU应运而生,旨在高效处理人工智能中的推理和训练任务。

  • 专用硬件架构:NPU具有针对神经网络的优化架构,能够加速常见的深度学习操作,如矩阵乘法、卷积操作等。其设计目标是比CPU和GPU更快、更节能地处理神经网络相关的计算任务。
  • 低功耗、高性能:NPU的核心优势在于其在低功耗的情况下可以实现高效的神经网络推理性能,尤其适合在移动设备、边缘计算设备中使用。

工作原理:NPU通常通过加速神经网络中的矩阵运算,使用特殊硬件单元(如MAC单元)来进行并行计算,并通过优化的数据路径减少数据传输时间。

应用场景:NPU广泛应用于智能手机中的AI加速(如人脸识别、语音识别等),以及自动驾驶、物联网设备等需要实时AI处理的场景。

对比分析

  • CPU:通用处理器,擅长顺序处理任务,适用于处理各种不同类型的计算任务,但在处理大规模并行任务时效率较低。
  • GPU:专注于并行处理任务,特别适合图像、视频渲染和大规模计算,如深度学习中的训练阶段。
  • NPU:专为加速神经网络计算设计,最适合在AI应用场景中进行低功耗、高效的推理任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/53806.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网络安全】-文件下载漏洞-pikachu

文件操作漏洞包括文件上传漏洞,文件包含漏洞,文件下载漏洞。 文章目录  前言 什么是文件下载漏洞? 1.常见形式: 常见链接形式: 常见参数: 2.利用方式: 3.举例:pikachu不安全的文件…

【Qt】按钮样式--按钮内部布局(调整按钮文本和图标放置在任意位置)

要求: 有一个按钮,要求按钮的右下角显示开关,点击切换开关状态 ps:注意,要求你添加完了之后,整个按钮的点击区域不变(就是说,点击右下角的文本,也可以触发按钮的点击事件…

CentOS7 使用yum报错:[Errno 14] HTTP Error 404 - Not Found 正在尝试其它镜像。

CentOS7 使用yum报错:[Errno 14] HTTP Error 404 - Not Found 正在尝试其它镜像。 CentOS镜像下载、VM虚拟机下载 下载地址:www.macfxb.cn 一、问题描述 安装完CentOS7 后 使用yum报错 如下图 二、解决方案 1.查看自己的系统架构 我的是aarch64 uname …

python 学习一张图

python学习一张图,python的特点的是学的快,一段时间不用,忘记的也快,弄一张图及一些入门案例吧。 写一个简单的测试: #!/usr/bin/python # -*- coding: UTF-8 -*- import osdef add_num(a, b):return a bif __name__…

【STM32】BH1750光敏传感

1.BH1750介绍 BH1750是一个光敏传感,采用I2C协议,对于I2C的从机,都有自己的地址,用来主机选择和哪个从机通信,对于OLED来说,只有单片机通过I2C往OLED中写数据。而BH1750来说,有单片机往BH1750写…

DNAT和SNAT实践

NAT分SNAT和DNAT两种。从名字上区分: SNAT将源IP地址替换为出口网络的IP地址,以便内网地址可以访问外网服务。一般受限于公网IP有限,一个内网集合想访问外网服务,则用统一的出口做代理。出口配置公网IP,帮助从此发出的…

Note24091101_基恩士日期获取相关测试01

基恩士日期获取相关测试 1、SEC和RSEC的使用: 资料如图: 要点提示:SEC和RSEC成对使用。 日期转秒,秒转日期测试如图所示: 2. LDWK与LDWKB星期接点的使用示例: 资料如图: 仿真如图&…

2018年系统架构师案例分析试题五

目录 案例 【题目】 【问题 1】(7 分) 【问题 2】(12 分) 【问题 3】(6 分) 【答案】 【问题 1】解析 【问题 2】解析 【问题 3】解析 相关推荐 案例 阅读以下关于 Web 系统设计的叙述,在答题纸上回答问题 1 至问题 3。 【题目】 某银行拟将以分行为主体…

287. 寻找重复数(stl法)

目录 一:题目: 二:代码: 三:结果: 一:题目: 给定一个包含 n 1 个整数的数组 nums ,其数字都在 [1, n] 范围内(包括 1 和 n),可知…

数模方法论-线性规划

一、基本概念 在实际生产过程中,人们经常面临如何有效利用现有资源来安排生产,以实现最大经济效益的问题。这类问题构成了运筹学的一个重要分支——数学规划,而线性规划(Linear Programming, LP)是数学规划中的一个关键…

Facebook的虚拟现实计划:未来社交的全新视角

随着科技的不断进步,虚拟现实(VR)正逐步成为我们日常生活的一部分。作为全球领先的社交平台,Facebook正在大力投入虚拟现实技术,以重新定义社交互动的方式。本文将深入探讨Facebook的虚拟现实计划,分析其如…

网络高级(学习)2024.9.11

目录 Modbus库函数 1.初始化和释放函数 2.功能函数 3.功能案例 Modbus RTU 1.特点 2.协议格式 3.编程思路 Modbus库函数 1.初始化和释放函数 modbus_t* modbus_new_tcp(const char *ip, int port) 功能:以TCP方式创建Modbus实例,并初始化 参数…

基于vue框架的城市智慧地铁管理系统73c2d(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能:用户,站点查询,车次线路,站点周边 开题报告内容 基于Vue框架的城市智慧地铁管理系统开题报告 一、研究背景与意义 1.1 研究背景 随着城市化进程的加速和人口的不断增长,城市交通压力日益增大。地铁作为城市公共交通的重要…

C++--模板

1 泛型编程 如何将Swap实现乘成一个通用的交换函数 void Swap(int& left, int& right) {int temp left;left right;right temp; }void Swap(double& left, double& right) {double temp left;left right;right temp; }void Swap(char& left, char&…

深入理解Java虚拟机:Jvm总结-Java内存区域与内存溢出异常

第二章 Java内存区域与内存溢出异常 2.1 意义 对于C、C程序开发来说,程序员需要维护每一个对象从开始到终结。Java的虚拟自动内存管理机制,让java程序员不需要手写delete或者free代码,不容易出现内存泄漏和内存溢出问题,但是如果…

【网络安全】-文件上传漏洞

文件操作漏洞包括文件上传漏洞,文件包含漏洞,文件下载漏洞。 文章目录 前言 什么是文件上传漏洞? 文件上传的验证与绕过: 1.前端js验证:   Microsft Edge浏览器: Google Chrome浏览器: 2.后端…

Taro实现微信小程序自定义拍照截图识别

效果图&#xff1a; 代码&#xff1a; <template><view class"lary-top" :style"{ height: ${topBarHight}px }"></view><Camerav-show"!canvasShow"class"camera-photo":style"{width: ${info.windowWidt…

LIO-SAM如何保存地图

一、找到LIO-SAM配置文件&#xff0c;路径为config/params.yaml&#xff0c;修改以下两项参数&#xff1a; savePCD: true # https://github.com/TixiaoShan/LIO-SAM/issues/3savePCDDirectory: "/home/slam/catkin_ws/src/maps" …

Http带消息头两种请求办法

API接口最近经常碰到&#xff0c;协调几个乙方来回对接&#xff0c;把我折腾晕了&#xff0c;索性自己写一个小的工具&#xff0c;导入历史数据。 获取平台免登录token 接口说明 URL Path&#xff1a;gateweb/bigm-dm/openApi/ologin/openLogin 说明&#xff1a;第三方免登…

Java架构师实战篇Redis亿级数据统计方案

目录 1 Redis亿个keys数据统计方案2 Redis聚合统计(SUNIONSTORE)3 Redis排序统计(LRANGE)4 值状态统计(bitmap)4.1 位图简介4.2 应用场景4.3 常用的命令4 基数统计(SADD)5 总结想学习架构师构建流程请跳转:Java架构师系统架构设计 1 Redis亿个keys数据统计方案 在 Web 和移动…