学习嵌入式第二十九天

ipc进程间通信方式

PC,即进程间通信(Inter-Process Communication),是操作系统中不同进程之间交换数据的一种机制。以下是一些常见的IPC方式:

  1. 管道:用于父子进程或兄弟进程之间的通信。
  2. 消息队列:允许进程发送和接收消息。
  3. 信号:一种简单的通知机制,用于通知进程某个事件已经发生。
  4. 共享内存:允许多个进程访问同一块内存区域。
  5. 套接字:支持进程之间的网络通信。
  6. 信号量:用于控制对共享资源的访问。
  7. 文件映射:将文件或设备映射到内存中,实现进程间的数据共享。
  8. 远程过程调用:允许一个进程调用另一个进程的函数或方法。
  9. 事件:用于进程间同步的一种机制,通常与信号量或互斥锁一起使用

 共享内存

共享内存是一种高效的进程间通信(IPC)机制,它允许两个或多个进程共享一个给定的存储区。以下是共享内存在IPC中实现的基本步骤:

  1. 创建共享内存段:首先,一个进程(通常是父进程)创建一个共享内存段。这通常涉及到调用操作系统的API,如shmget在UNIX系统中。

  2. 附加到共享内存:创建共享内存后,其他进程需要将这个共享内存段附加到自己的地址空间中。这通常通过shmat函数实现,它会返回共享内存的地址。

  3. 读写共享内存:一旦共享内存被附加到进程的地址空间,进程就可以像操作自己的内存一样读写共享内存中的数据。

  4. 同步:由于多个进程可以同时访问共享内存,因此需要某种形式的同步机制来避免竞态条件和数据不一致。这通常通过使用信号量(semaphores)、互斥锁(mutexes)或条件变量来实现。

  5. 内存保护:操作系统通常提供对共享内存的保护机制,以确保进程只能访问它们被授权访问的部分。

  6. 分离共享内存:当进程不再需要访问共享内存时,它会从自己的地址空间中分离共享内存段,这通常通过shmdt函数实现。

  7. 删除共享内存:最后,当所有进程都不再需要共享内存时,创建共享内存的进程或拥有足够权限的进程可以删除共享内存段,释放资源。

//step1 产生key值 
ftok //


#include <sys/types.h>
       #include <sys/ipc.h>

       key_t ftok(const char *pathname, int proj_id);
       功能:
             将pathname 和 proj_id 转换为 key值 
       参数:
        @pathname  //给一个路径名 
        @proj_id   //工程id       eg: 'A'
       返回值
          成功 key值
          失败 -1     

//step2 通过key获取ipc对象 (共享内存)
shmget   //shared memory 


//1、申请对象:shmget()
    #include <sys/ipc.h>
    #include <sys/shm.h>
    ps aux|grep a.out
        shared memory get         IPC_CREAT|0666
    int shmget(key_t key, size_t size, int shmflg);
    功能:
         使用唯一键值key向内核提出共享内存使用申请
    参数:key   唯一键值
          size  要申请的共享内存大小
          shmflg 申请的共享内存访问权限,八进制表示
          如果是第一个申请,则用IPC_CREAT
          如果要检测是否存在,用IPC_EXCL
    返回值:
            成功 返回共享内存id,一般用shmid表示
            失败  -1;

            share memory attach

//step3 共享内存 绑定 
shmat 

    映射对象:shmat()
    void *shmat(int shmid, const void *shmaddr, int shmflg);
    功能:将指定shmid对应的共享内存映射到本地内存。
    参数:shmid 要映射的本地内存
          shmaddr 本地可用的地址,如果不确定则用NULL,表示
                  由系统自动分配。
          shmflg  
          0         ,  表示读写
          SHM_RDONLY, 只读
    返回值:
           成功 返回映射的地址,一般等于shmaddr
            失败 (void*)-1        

//step4 解除绑定(映射)

    撤销映射:shmdt
    int shmdt(const void *shmaddr);
    功能:将本地内存与共享内存断开映射关系。
    参数:shmaddr 要断开的映射地址。
    返回值:成功  0
            失败  -1;

          

//step4 销毁IPC对象 
        删除对象:shmctl
    int shmctl(int shmid, int cmd, struct shmid_ds *buf); //ctl = control 
    功能:
         修改共享内存属性,也可以删除指定的共享内存对象。
    参数:shmid 要删除的共享内存对象
          cmd 
               IPC_RMID 删除对象的宏
          buff  NULL 表示只删除对象。
    返回值:成功 0
            失败 -1

网络
 

网络是由多个设备通过通信链路相互连接形成的系统,这些设备可以是计算机、服务器、路由器、交换机等。网络的主要功能是实现数据的传输和共享,允许用户访问远程资源、进行通信和协作。

网络可以根据其覆盖范围分为几种类型:

  1. 局域网(LAN):通常覆盖较小的地理区域,如一个办公室或学校。
  2. 广域网(WAN):覆盖较大的地理区域,可以跨越城市、国家甚至全球。
  3. 城域网(MAN):介于LAN和WAN之间,通常覆盖一个城市或地区。
  4. 个人区域网(PAN):覆盖非常小的区域,通常是个人设备之间的连接,如蓝牙耳机和手机。

简单来说 网络就是实现不同主机间通信的方法。

实现网络通信
1.物理层面 有一个 信息通路  

2.软件层面(逻辑层面) 也需要 一个通路 

osi七层模型 

 实际应用到的是 tcp/ip 模型 

 每个层次中,都有自己的一套规范 --- 协议 

IP地址(Internet Protocol Address)是互联网协议地址,它是分配给网络中每个设备的唯一标识符,用于在互联网上进行通信。IP地址使得数据能够在网络中的不同设备之间传输。

IP地址的组成如下:

  1. 版本:IP地址分为IPv4和IPv6两个版本。IPv4是目前最常用的版本,由32位二进制数组成,通常以点分十进制表示,如192.168.1.1。IPv6是较新的版本,由128位二进制数组成,以冒号分隔的十六进制表示,如2001:0db8:85a3:0000:0000:8a2e:0370:7334。

  2. 网络部分:IP地址中的网络部分用于标识设备所属的网络。在IPv4中,网络部分的长度可以根据子网掩码来确定。

  3. 主机部分:IP地址中的主机部分用于标识网络中的特定设备。

  4. 子网掩码:子网掩码用于区分IP地址中的网络部分和主机部分。它是一个与IP地址相对应的32位或128位二进制数,其中网络部分为1,主机部分为0。

  5. 广播地址:广播地址用于向同一网络中的所有设备发送数据。

  6. 特殊用途地址:包括回环地址(127.0.0.1,用于设备测试自身网络栈)、私有地址(如192.168.x.x,通常用于局域网内部通信)等。

  7. 公共地址:也称为公网地址,是分配给互联网上可访问的设备的IP地址,它们是唯一的,可以在全球范围内被识别。

  8. 动态IP地址:由DHCP服务器动态分配,每次设备连接到网络时可能会获得不同的IP地址。

  9. 静态IP地址:是手动配置的,通常用于需要固定IP地址的服务器或设备。

 网络编程

UDP(User Datagram Protocol)用户数据报协议,是不可靠的无连接的协议。
在数据发送前,因为不需要进行连接,所以可以进行高效率的数据传输。

* 适用情况:
1. 发送小尺寸数据(如对DNS服务器进行IP地址查询时)
2. 在接收到数据,给出应答较困难的网络中使用UDP。(如:无
线网络)
3. 适合于广播/组播式通信中。
4. MSN/QQ/Skype等即时通讯软件的点对点文本通讯以及音视频通
讯通常采用UDP协议
5. 流媒体、VOD、VoIP、IPTV等网络多媒体服务中通常采用UDP
方式进行实时数据传输

UDP特点:    //广播 
1.不可靠 
2.无连接 
3.数据报  
 

编程模型 
     c/s    client server    客户端,服务器模型     --- 专用客户端 
     b/s    browser server   浏览器,服务器模型     --- 通用的客户端 
     p2p    peer to peer     点对点传输 
     
     

基于UDP c/s通信模型:
//client ---客户端 --- 角色  --- 主动的角色  
socket    //1.一种特殊的文件 --- 专门用于网络通信(不同主机间的进程)
          //2.socket 编程接口  --- socket 函数 
          //提供了一个可以访问 操作系统 网络功能的接口 
          
sendto //发数据 
//server --- 服务器端 --角色 --- 被动的角色  
socket 
recvfrom    //接收数据 

socket 

 int socket(int domain, int type, int protocol);
#include <sys/types.h>          /* See NOTES */
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
功能:程序向内核提出创建一个基于内存的套接字描述符    
参数:   
      //domain --域 (范围) ---socket 用于什么范围的通信
      //           ipv4 
     //               ipv6 
      domain  地址族,PF_INET == AF_INET ==>互联网程序
                      PF_UNIX == AF_UNIX ==>单机程序
      type    套接字类型:
                SOCK_STREAM  流式套接字 ===》TCP   
              SOCK_DGRAM   用户数据报套接字===>UDP
              //SOCK_RAW     原始套接字  ===》IP
      protocol 协议 ==》0 表示自动适应应用层协议。

返回值:

        成功 返回申请的套接字文件描述符 
        失败  -1
        
      
    ssize_t sendto(    int sockfd,  //用于通信的socket对应的fd
                  const void *buf,  //表示要发送的数据所在的一块空间 
                       size_t len,  //表示发送的字节数 
                        int flags,  //0  --- 默认  
 const struct sockaddr *dest_addr,  //表示 要发送到的 地址 (网络地址 ip+端口号 ) 
                socklen_t addrlen   //表示dest_addr 这个参数的长度 
                );
      
      返回值:
          成功  发送出去的字节的数 
          失败  -1 
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/52178.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

selenium-java实现自动登录跳转页面

如果要一直刷新一个网页&#xff0c;总不能人工一直去点&#xff0c;所以想到大学时候学过selenium技术&#xff0c;写个脚本来一直刷新&#xff0c;因为经常写java语言&#xff0c;所以选用java语言来写 实验环境 注意&#xff0c;需要先准备好Google浏览器和Chrome-Driver驱…

ffmpeg6.1集成Plus-OpenGL-Patch滤镜

可参考上一篇文章。ffmpeg6.1集成ffmpeg-gl-transition滤镜-CSDN博客 安装思路大致相同&#xff0c; 因为 Plus-OpenGL-Patch也是基于 ffmpeg 4.x 进行开发的&#xff0c;所以在高版本上安装会有很多报错。 这是我安装后的示例&#xff0c;需要安装教程或者改代码可私信我。 …

记录一次 Redis 优化发送数据(使用管道批量传送)

一 项目背景 此前的项目中&#xff0c;鉴于客户方服务器的安全配置对 MQ 中间件有所限制&#xff0c;我们只得采用 Redis 的 list 作为简易的 MQ 来传送报文数据。然而&#xff0c;近段时间客户关闭了相关端口&#xff0c;导致大量数据积压&#xff0c;需要进行补发。在补发过程…

大数据背景下基于Python的牛油果销售数据可视化分析

注&#xff1a;源码在最后&#xff0c;只是一次实验记录&#xff0c;不合理的地方自行修改。 一 研究背景及意义 21世纪以来&#xff0c;随着科学技术的进步&#xff0c;人们的生活水平也随之大幅提升提高。在科技和经济快速发展下&#xff0c;全球已经进入了大数据时代。大数…

8.21-部署eleme项目

1.设置主从从mysql57服务器 &#xff08;1&#xff09;配置主数据库 [rootmsater_5 ~]# systemctl stop firewalld[rootmsater_5 ~]# setenforce 0[rootmsater_5 ~]# systemctl disable firewalldRemoved symlink /etc/systemd/system/multi-user.target.wants/firewalld.serv…

使用 Fyne 构建 GUI 应用:设置标签文本和自增计数器

引言 Fyne 是一个用 Go 语言编写的跨平台 GUI 框架&#xff0c;它提供了一套丰富的组件来帮助开发者快速构建出漂亮的用户界面。在本文中&#xff0c;我们将通过一个简单的案例来演示如何使用 Fyne 创建 GUI 应用程序&#xff0c;该程序包含设置标签文本和自增计数器的功能。 …

「字符串」前缀函数|KMP匹配:规范化next数组 / LeetCode 28(C++)

目录 概述 思路 核心概念&#xff1a;前缀函数 1.前缀函数 2.next数组 1.考研版本 2.竞赛版本 算法过程 构建next数组 匹配过程 复杂度 Code 概述 为什么大家总觉得KMP难&#xff1f;难的根本就不是这个算法本身。 在互联网上你可以见到八十种KMP算法的next数组…

项目1 物流仓库管理系统

一、项目概述 本项目旨在开发一个功能全面的物流仓库管理系统&#xff0c;以数字化手段优化仓库作业流程&#xff0c;提高管理效率。系统集成了前端用户交互界面与后端数据处理逻辑&#xff0c;涵盖了从用户注册登录、订单管理、货单跟踪到用户信息维护等多个核心业务模块。通…

基于django的学生作业提交与管理系统,有管理后台,可作为课设使用

在本项目中&#xff0c;我们设计并实现了一个基于Django框架的学生作业提交与管理系统&#xff0c;旨在为教师和学生提供一个高效、便捷的作业管理平台。Django作为一个高效的Web框架&#xff0c;因其强大的功能和灵活的架构&#xff0c;使得本系统能够快速开发并扩展。 系统功…

Maven的简单使用

Maven使用 Maven的作用1. 自动构建标准化的java项目结构(1) 项目结构① 约定目录结构的意义② 约定大于配置 (2)项目创建坐标坐标的命名方法&#xff08;约定&#xff09; 2. 帮助管理java中jar包的依赖(1) 配置使用依赖引入属性配置 (2) maven指令(3) 依赖的范围(4) 依赖传递(…

【密码学】密钥管理:②密钥分配

一、密钥分配的定义 密钥分配是密钥管理生命周期中最重要的部分&#xff0c;密钥分配方案研究的是密码系统中密钥的分发和传送问题。从本质上讲&#xff0c;密钥分配为通信双方建立用于信息加密、解密签名等操作的密钥&#xff0c;以实现保密通信或认证签名等。 &#xff08;1…

win10蓝牙只能发送,无法接收

给win10升了级&#xff0c;到22H2&#xff0c;蓝牙出了问题 以前接收&#xff0c;就是默认直接就可以接收。现在只能发送&#xff0c;无法接收。 在网上找了很多办法都没奏效&#xff0c;目前的方法是&#xff0c; 每次接收&#xff0c;都要操作一次&#xff0c;而不是自动接…

leetcode-538. 把二叉搜索树转换为累加树

题目描述 给出二叉 搜索 树的根节点&#xff0c;该树的节点值各不相同&#xff0c;请你将其转换为累加树&#xff08;Greater Sum Tree&#xff09;&#xff0c;使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。 提醒一下&#xff0c;二叉搜索树满足下列约束…

计量自动化终端上行通信规约

物理层 TCP 和 UDP 的传输接口 该类接口的登录链接和心跳检测采用链路测试服务&#xff0c;链路测试周期可设定。 参见 TCP/IP 协议规范。 串行通信传输接口 字节传输按异步方式进行&#xff0c;它包含 8 个数据位、1 个起始位“0”、1 个偶校验位 P 和 1 个停止位“1”。 …

Android Studio 动态表格显示效果

最终效果 一、先定义明细的样式 table_row.xml <?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_h…

集团数字化转型方案(四)

集团数字化转型方案通过全面部署人工智能&#xff08;AI&#xff09;、大数据分析、云计算和物联网&#xff08;IoT&#xff09;技术&#xff0c;创建了一个智能化的企业运营平台&#xff0c;涵盖从业务流程自动化、实时数据监控、精准决策支持&#xff0c;到个性化客户服务和高…

实验七:独立按键实验

硬件电路图和题目; LED1-LD8是 P2口8个管脚 mian.c #include<reg52.h>sbit But1=P3^1 ; sbit But2=P3^0 ; sbit But3=P3^2 ; sbit But4=P3^3 ;sbit LED1 =P2^0 ; sbit LED2 =P2^1 ; sbit LED3 =P2^2 ; sbit LED4 =P2^3 ;#define PRESS_1 1 #define PRESS_…

CUTLASS 中的 47_ampere_gemm_universal_streamk 示例

前一篇文章介绍了 Stream-K: Work-centric Parallel Decomposition for Dense Matrix-Matrix Multiplication on the GPU 论文&#xff0c;下面对其代码实现进行分析。 cutlass 的 examples/47_ampere_gemm_universal_streamk 展示了 GEMM Stream-K 算法在 Ampere 架构上的使用…

JNPF 5.0升级钜惠,感恩回馈永远在路上

尊敬的JNPF用户们&#xff1a; 经过引迈团队数月的辛勤努力和不断的技术创新&#xff0c;JNPF快速开发平台迎来全新升级——5.0版本&#xff01;此次5.0版本的迭代革新&#xff0c;不仅代表着我们技术实力的进一步提升&#xff0c;是我们对用户需求的深度理解和积极回应。为了…

基于C# winform部署图像动漫化AnimeGANv2部署onnx模型

【界面截图】 【效果演示】 【部分实现代码】 using System; using System.Diagnostics; using System.Windows.Forms; using OpenCvSharp;namespace FIRC {public partial class Form1 : Form{Mat src null;public Form1(){InitializeComponent();}private void button1_Cli…