交叉调制少样本图像生成用于结直肠组织分类

文章目录

  • Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification
    • 摘要
    • 方法
    • 实验结果

Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification

摘要

  1. 提出问题

    • 针对罕见癌症组织的组织病理训练数据稀缺问题,他们提出了少样本结直肠组织图像生成方法。
  2. 方法介绍

    • 提出的方法名为XM-GAN,接受一个基准图像和一对参考组织图像作为输入,生成高质量且多样化的图像。
    • 在XM-GAN中,采用了一种新颖的可控融合块,通过密集聚合参考图像和基准图像中局部区域的相似性,产生局部一致的特征。
  3. 研究贡献

    • 他们是第一个研究结直肠组织图像中少样本生成的团队。
    • 通过广泛的定性、定量和专家(病理学家)评估,对其提出的方法进行评估。
  4. 评估结果

    • 在专家评估中,病理学家仅在55%的时间内能够区分XM-GAN生成的组织图像和真实图像。
    • 利用生成的图像作为数据增强,解决少样本组织图像分类任务,在平均准确率方面取得了4.4%的提升。

方法

在这里插入图片描述
Fig. 1: XM-GAN由一个CNN编码器、一个基于Transformer的可控融合块(CFB)和一个用于组织图像生成的CNN解码器组成。对于K-shot设置,一个共享编码器 F E F_E FE接受一个基准组织图像 x b x^b xb 以及 K − 1 K-1 K1 个参考组织图像 x i r e f i = 1 K − 1 {x^{ref}_i}^{K-1}_{i=1} xirefi=1K1,分别输出视觉特征 h b h^b hb h i r e f h^{ref}_i hiref。在CFB中,一个映射网络计算元权重,用于在交叉注意力期间生成特征重新加权的调制权重。交叉注意力得到的特征 f i f_i fi 被融合并输入到解码器 (FD) 中,生成一幅图像 x ^ \hat{x} x^

在这里插入图片描述
z z z为噪声, α \alpha α为控制参数

实验结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/5111.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

maven-idea新建和导入项目

全局配置 新建项目 需要新建的文件夹 src/testsrc/test/javasrc/main/java 注:1、新建Java-class,输入.com.hello.hellomaven 2、快捷键psvm显示 public static void main(String[] args) {.... } package com.hello;public class hellomaven {publ…

案例分享:使用RabbitMQ消息队列和Redis缓存优化Spring Boot秒杀功能

作者介绍:✌️大厂全栈码农|毕设实战开发,专注于大学生项目实战开发、讲解和毕业答疑辅导。 推荐订阅精彩专栏 👇🏻 避免错过下次更新 Springboot项目精选实战案例 更多项目:CSDN主页YAML墨韵 学如逆水行舟&#xff0c…

抄表自动化的实现与优势

1.界定与简述 抄表自动化是一种当代关键技术,致力于取代传统的手动式抄表方法,通过远程数据数据采集解决,完成电力工程、水、气等公用事业电力仪表的全自动载入。这一系统利用先进的感应器、物联网技术(IoT)设备及数据数据分析工具&#xff…

Centos7安装K8S集群环境

一、系统设置 1、关闭swap 临时关闭swap swapoff -a 永久关闭 注释掉 /etc/fstab 中的下面配置 #/dev/mapper/centos-swap swap swap defaults 0 0 2、 关闭SELinux kubelet不支持SELinux, 这里需要将SELinux设置为permissive模式 setenforce 0 sed -i s/^SELINUXenfo…

如何制作一个后台管理页面的路由以及功能实现

后台 文章目录 后台一、RESFUL API二、各模块路由处理1、分类模块1.1、GET /list 分类列表1.2、POST / 新增|编辑分类1.3、DELETE / 删除分类1.4、GET /option 分类选项列表 2、评论模块2.1、GET /list 评论列表2.2、DELETE / 删除评论2.3、PUT /review 修改评论审核 3、留言模…

Linux基础IO(下)

目录 1. 缓冲区 1.1 定义 1.2 理解缓冲区 1.2.1 为什么要有缓冲区 1.2.2 缓冲区的工作原理 缓冲区什么时候写入,什么时候刷新? 2. 文件系统 2.1 什么是文件系统? 2.2 为什么要有文件系统? 2.3 认识文件的管理结构 2.…

机器学习:深入解析SVM的核心概念(问题与解答篇)【二、对偶问题】

对偶问题 **问题一:什么叫做凸二次优化问题?而且为什么符合凸二次优化问题?**为什么约束条件也是凸的半空间(Half-Space)凸集(Convex Set)半空间是凸集的例子SVM 约束定义的半空间总结 **问题二…

Flutter创建自定义的软键盘

参考代码: Flutter - Create Custom Keyboard Examples 本文贴出的代码实现了一个输入十六进制数据的键盘: (1)支持长按退格键连续删除字符; (2)可通过退格键删除选中的文字; &…

Spark-机器学习(8)分类学习之随机森林

在之前的文章中,我们学习了分类学习之支持向量机决策树支持向量机,并带来简单案例,学习用法。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞&a…

【论文阅读——基于拍卖的水平联邦学习后付款激励机制设计与声誉和贡献度测量】

1.原文名称 Auction-Based Ex-Post-Payment Incentive Mechanism Design for Horizontal Federated Learning with Reputation and Contribution Measurement 2.本文的贡献 我们提出了一种贡献度测量方法。我们建立了一个声誉系统。声誉易于下降,难以提高。结合声…

第6篇:创建Nios II工程之控制LED<一>

Q:还记得第1篇吗?设计简单的逻辑电路,控制DE2-115开发板上LED的亮与熄灭,一行Verilog HDL的assign赋值语句即可实现。本期开始创建Nios II工程,用C语言代码控制DE2-115开发板上的LED实现流水灯效果。 A:在…

Windows编译OpenCV及扩展模块

OpenCV官网只提供了OpenCV Windows 64位动态库且不包括扩展模块,如果需要32位动态库,或者需要扩展模块的功能,则需要下载源码进行编译。 1. 版本说明与下载地址 OpenCV下载 https://github.com/opencv/opencv/releases/tag/4.9.0 OpenCV扩展模…

企业选择内外网文件摆渡平台的常见三大误区

网络隔离技术现在已经广泛应用于企业安全管理中,企业使用逻辑隔离或物理隔离的方式将网络隔离为内外网进而隔绝外部有害网络攻击,保护内部重要数据资产,但网络隔离后企业仍存在数据交换的需求,此时就需要内外网文件摆渡平台来承担…

人工智能_大模型044_模型微调004_随机梯度下降优化_常见损失计算算法_手写简单神经网络_实现手写体识别---人工智能工作笔记0179

然后对于,梯度下降,为了让训练的速度更好,更快的下降,又做了很多算法,可以看到 这里要知道Transformer中最常用的Adam 和 AdamW这两种算法. 当然,这些算法都是用于优化神经网络中的参数,以最小化损失函数。下面我会尽量以通俗易懂的方式解释它们的原理和适用场景。 1. **L-…

selenium设置元素隐藏和显示

常见元素隐藏情况 在HTML中,由于页面美化和用户交互的需求,元素隐藏的使用非常常见,比如下拉菜单、内容折叠、对话框以及上传文件框等。隐藏常见有以下几种表现形式: hidden:占据空间,无法点击 style"…

Java成员内部类全解析:从创建、使用到优缺点分析

什么是成员内部类? 在Java的开发中,我们有时会遇到一种特殊的类,它并不像平常的类那样独立存在,而是寄生在另一个类的内部,这就是我们今天要讲的成员内部类。 成员内部类,顾名思义,是作为另一…

自然语言处理 (NLP) 和文本分析

自然语言处理 (NLP) 和文本分析:NLP 在很多领域都有着广泛的应用,如智能助手、语言翻译、舆情分析等。热门问题包括情感分析、命名实体识别、文本生成等。 让我们一起来详细举例子的分析讲解一下自然语言处理(NLP)和文本分析的应用…

BiLSTM-KDE的双向长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab)

BiLSTM-KDE的双向长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab) 目录 BiLSTM-KDE的双向长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.BiLS…

JAVA面试专题-Redis

你在最近的项目中哪些场景使用了Redis 缓存 缓存穿透 缓存穿透:查询一个不存在的数据,mysql查询不到数据也不好直接写入缓存,导致每次请求都查数据库。 解决方案一:缓存空数据,即使查询返回的数据为空,也把…

微信小程序开发核心:样式,组件,布局,矢量图标

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…