人工智能_大模型044_模型微调004_随机梯度下降优化_常见损失计算算法_手写简单神经网络_实现手写体识别---人工智能工作笔记0179

 

然后对于,梯度下降,为了让训练的速度更好,更快的下降,又做了很多算法,可以看到

这里要知道Transformer中最常用的Adam 和 AdamW这两种算法.

当然,这些算法都是用于优化神经网络中的参数,以最小化损失函数。下面我会尽量以通俗易懂的方式解释它们的原理和适用场景。
1. **L-BFGS(Limited-memory BFGS)**:- **原理**:L-BFGS是一种拟牛顿方法,用于解决大规模的优化问题。
它使用历史梯度来近似Hessian矩阵(即目标函数的二阶导数矩阵),以此来更新参数。- **适用场景**:当数据集不是特别大时,L-BFGS表现很好,因为它需要存储过去的
一些梯度信息。但对于特别大的数据集或网络,其内存需求可能会变得太大。
2. **Rprop(Resilient Propagation)**:- **原理**:Rprop是一种基于梯度的优化算法,但与其它算法不同的是,它不使用
学习率。它通过自适应调整每个参数的学习步长来优化网络。- **适用场景**:Rprop特别适用于训练神经网络,尤其是当网络包含多个局部最
小值时。但由于其不使用全局学习率,它可能不如其它算法那样易于实现或调整。
3. **RMSprop**:- **原理**:RMSprop是Geoff Hinton提出的一种自适应学习率方法。它通过计算梯度
平方的移动平均来调整每个参数的学习率。- **适用场景**:RMSprop在处理非平稳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/5088.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

selenium设置元素隐藏和显示

常见元素隐藏情况 在HTML中,由于页面美化和用户交互的需求,元素隐藏的使用非常常见,比如下拉菜单、内容折叠、对话框以及上传文件框等。隐藏常见有以下几种表现形式: hidden:占据空间,无法点击 style"…

Java成员内部类全解析:从创建、使用到优缺点分析

什么是成员内部类? 在Java的开发中,我们有时会遇到一种特殊的类,它并不像平常的类那样独立存在,而是寄生在另一个类的内部,这就是我们今天要讲的成员内部类。 成员内部类,顾名思义,是作为另一…

自然语言处理 (NLP) 和文本分析

自然语言处理 (NLP) 和文本分析:NLP 在很多领域都有着广泛的应用,如智能助手、语言翻译、舆情分析等。热门问题包括情感分析、命名实体识别、文本生成等。 让我们一起来详细举例子的分析讲解一下自然语言处理(NLP)和文本分析的应用…

BiLSTM-KDE的双向长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab)

BiLSTM-KDE的双向长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab) 目录 BiLSTM-KDE的双向长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.BiLS…

JAVA面试专题-Redis

你在最近的项目中哪些场景使用了Redis 缓存 缓存穿透 缓存穿透:查询一个不存在的数据,mysql查询不到数据也不好直接写入缓存,导致每次请求都查数据库。 解决方案一:缓存空数据,即使查询返回的数据为空,也把…

微信小程序开发核心:样式,组件,布局,矢量图标

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

MAC 本地搭建Dify环境

Dify 介绍 Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过…

国内首个图计算平台团体标准发布,创邻科技参与编撰

2024年,由中国通信标准协会批准的团体标准《大数据 图计算平台技术要求与测试方法》(编号:T/CCSA 470—2023)(下称:标准)正式实施。该标准于1月4日在全国团体标准信息平台(https://w…

超越GPT-4,清华发布网页导航智能体AutoWebGLM

随着大语言模型(LLMs)的发展,Agent在网络导航等任务中展现出了前所未有的能力。想象一下,一个基于LLM的Agent能够在你享用早餐时为你总结在线新闻,这样的场景已经不再遥不可及。这种将LLMs融入日常任务的做法&#xff…

AI小白使用Macbook Pro安装llama3与langchain初体验

1. 背景 AI爆火了2年有余,但我仍是一个AI小白,最近零星在学,随手记录点内容供自己复习。 上次在Macbook Pro上安装了Stable Diffusion,体验了本地所心所欲地生成各种心仪的图片,完全没有任何限制的惬意。今天想使用M…

Kafka客户端工具:Offset Explorer 使用指南

Kafka作为一个分布式流处理平台,在大数据处理和实时数据流应用中扮演着至关重要的角色。管理Kafka的topics及其offsets对于维护系统稳定性和数据一致性至关重要。Offset Explorer是一个强大的桌面应用程序,它使得管理和监控Kafka集群变得简单直观。本文将…

Ftrans文件外发系统 构建安全可控文件外发流程

文件外发系统是企业数据安全管理中的关键组成部分,它主要用于处理企业内部文件向外部传输的流程,确保数据在合法、安全、可控的前提下进行外发。 文件外发系统的主要作用包括: 1、防止数据泄露:通过严格的审批流程和安全策略&…

【JavaWeb】Day61.SpringBootWeb案例——配置文件

配置文件 参数配置化 在我们之前编写的程序中进行文件上传时,需要调用AliOSSUtils工具类,将文件上传到阿里云OSS对象存储服务当中。而在调用工具类进行文件上传时,需要一些参数: - endpoint //阿里云OSS域名 - accessKey…

JAVA基础---Stream流

Stream流出现背景 背景 在Java8之前,通常用 fori、for each 或者 Iterator 迭代来重排序合并数据,或者通过重新定义 Collections.sorts的 Comparator 方法来实现,这两种方式对 大数量系统来说,效率不理想。 Java8 中添加了一个…

【酱浦菌-模拟仿真】python模拟仿真PN结伏安特性

PN结的伏安特性 PN结的伏安特性描述了PN结在外部电压作用下的电流-电压行为。这种特性通常包括正向偏置和反向偏置两种情况。 正向偏置 当外部电压的正极接到PN结的P型材料,负极接到N型材料时,称为正向偏置。在这种情况下,外加的正向电压会…

如何编写测试用例

总结 测试用例需求来源 文档 用户角度 编写测试用例步骤 分析需求 写测试点 对需求的拆分 辅助完成测试用例的编写 编写测试用例 编写测试用例原则 能看懂 能执行 测试结果状…

kubernetes中Pod调度-Taints污点和污点容忍

一、污点的概念 所谓的污点,是给k8s集群中的节点设置的,通过设置污点,来规划资源创建是所在的节点 污点的类型 解释说明PreferNoshedule 节点设置这个污点类型后; 表示,该节点接收调度,但是会降低调度的概…

如何退出远程桌面连接?

远程桌面连接是一种便捷的远程访问方式,可以让用户在任何地方远程访问并控制另一台计算机。但是,在使用远程桌面连接过程中,有时我们需要及时退出连接,以保护数据安全或释放计算资源。本文将介绍如何退出远程桌面连接。 使用Windo…

IC设计数据传输 如何能保障安全高效?

IC(集成电路)设计数据,对于IC设计企业来说,其重要性不言而喻。所以IC设计数据传输过程中,其安全性和效率,也需要有保障。 首先我们来看看IC设计数据为什么重要,其重要性体现在多个方面&#xff…

分布式与一致性协议之Raft算法(二)

Raft算法 什么是任期 我们知道,议会选举中的领导者是有任期的,当领导者任命到期后,需要重新再次选举。Raft算法中的领导者也是有任期,每个任期由单调递增的数字(任期编号)标识。比如,节点A的任期编号是1。任期编号会…