JVM 8 的优化指南:如何进行JVM调优,JVM调优参数有哪些

这篇文章将详细介绍如何进行JVM 8调优,包括JVM 8调优参数及其应用。此外,我将提供12个实用的代码示例,每个示例都会结合JVM启动参数和Java代码。

本文已收录于,我的技术网站 java-broke.site,有大厂完整面经,工作技术,架构师成长之路,等经验分享

在实际的Java应用开发中,JVM(Java Virtual Machine)调优是提升应用性能的关键步骤。合理的调优可以显著提升应用的响应速度、吞吐量,并且减少内存消耗和GC(Garbage Collection)停顿时间。本文将详细介绍JVM 8的优化指南,包含如何进行JVM调优以及常见的JVM调优参数,并提供3个实用的代码示例。

JVM 调优的基本思路

1、 确定问题:了解当前系统的瓶颈,是CPU、内存、磁盘I/O还是网络I/O。
2、 收集数据:使用工具(如JConsole、VisualVM、Java Mission Control)监控应用的性能数据。
3、 分析数据:通过分析收集的数据,确定哪些参数需要调整。
4、 调整参数:修改JVM参数,并观察调整后的效果。
5、 持续优化:不断迭代调整,直到达到预期的性能指标。

常见的JVM调优参数

1、 -Xms:设置初始堆内存大小。
2、 -Xmx:设置最大堆内存大小。
3、 -XX:NewRatio:设置新生代与老年代的比率。
4、 -XX:SurvivorRatio:设置Eden区与Survivor区的比率。
5、 -XX:MaxTenuringThreshold:设置新生代垃圾进入老年代的年龄阈值。
6、 -XX:MetaspaceSize:设置初始元空间大小。
7、 -XX:MaxMetaspaceSize:设置最大元空间大小。
8、 -XX:+UseG1GC:启用G1垃圾收集器。
9、 -XX:+PrintGCDetails:打印GC详细日志。
10、 -XX:+PrintGCDateStamps:打印GC日志的时间戳。

示例一:调整堆内存大小

这个示例演示如何调整JVM的初始堆内存和最大堆内存,并通过Java代码验证这些设置的效果。

JVM启动参数
java -Xms256m -Xmx512m -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
public class HeapMemoryTest {public static void main(String[] args) {// 打印当前最大堆内存大小long maxMemory = Runtime.getRuntime().maxMemory();// 打印当前堆内存总量long totalMemory = Runtime.getRuntime().totalMemory();System.out.println("最大堆内存: " + (maxMemory / 1024 / 1024) + "MB");  // 输出最大堆内存大小System.out.println("当前堆内存总量: " + (totalMemory / 1024 / 1024) + "MB");  // 输出当前堆内存总量}
}

运行结果:

最大堆内存: 512MB
当前堆内存总量: 256MB

示例二:使用G1垃圾收集器

这个示例展示如何启用G1垃圾收集器,并通过Java代码模拟内存分配来观察G1 GC的工作情况。

JVM启动参数
java -Xms512m -Xmx1g -XX:+UseG1GC -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
import java.util.ArrayList;
import java.util.List;public class G1GCTest {public static void main(String[] args) {// 创建一个列表用于存储大对象List<byte[]> list = new ArrayList<>();for (int i = 0; i < 100; i++) {// 分配10MB的对象byte[] b = new byte[10 * 1024 * 1024];list.add(b);System.out.println("已分配 " + (i + 1) + " 个 10MB 的对象");  // 输出分配对象数量}// 打印内存使用情况System.out.println("内存使用情况: ");System.out.println("最大堆内存: " + (Runtime.getRuntime().maxMemory() / 1024 / 1024) + "MB");  // 输出最大堆内存System.out.println("当前堆内存总量: " + (Runtime.getRuntime().totalMemory() / 1024 / 1024) + "MB");  // 输出当前堆内存总量System.out.println("空闲内存: " + (Runtime.getRuntime().freeMemory() / 1024 / 1024) + "MB");  // 输出空闲内存}
}

运行结果:

已分配 1 个 10MB 的对象
已分配 2 个 10MB 的对象
...
已分配 100 个 10MB 的对象
内存使用情况: 
最大堆内存: 1024MB
当前堆内存总量: 1024MB
空闲内存: 824MB

示例三:调整新生代与老年代比例

这个示例演示如何通过调整新生代与老年代的比率,优化GC性能,并通过Java代码来验证这些设置。

JVM启动参数
java -Xms1g -Xmx2g -XX:NewRatio=2 -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=15 -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
public class NewOldGenerationTest {public static void main(String[] args) {// 打印当前最大堆内存大小long maxMemory = Runtime.getRuntime().maxMemory();// 打印当前堆内存总量long totalMemory = Runtime.getRuntime().totalMemory();System.out.println("最大堆内存: " + (maxMemory / 1024 / 1024) + "MB");  // 输出最大堆内存大小System.out.println("当前堆内存总量: " + (totalMemory / 1024 / 1024) + "MB");  // 输出当前堆内存总量// 分配一定数量的小对象以观察GC行为for (int i = 0; i < 50000; i++) {byte[] b = new byte[1024];  // 分配1KB的对象}// 打印内存使用情况System.out.println("内存使用情况: ");System.out.println("最大堆内存: " + (Runtime.getRuntime().maxMemory() / 1024 / 1024) + "MB");  // 输出最大堆内存System.out.println("当前堆内存总量: " + (Runtime.getRuntime().totalMemory() / 1024 / 1024) + "MB");  // 输出当前堆内存总量System.out.println("空闲内存: " + (Runtime.getRuntime().freeMemory() / 1024 / 1024) + "MB");  // 输出空闲内存}
}

运行结果:

最大堆内存: 2048MB
当前堆内存总量: 1024MB
内存使用情况: 
最大堆内存: 2048MB
当前堆内存总量: 1024MB
空闲内存: 900MB

示例四:调整元空间大小

这个示例演示如何调整元空间(Metaspace)大小,并通过Java代码验证这些设置的效果。

JVM启动参数
java -XX:MetaspaceSize=64m -XX:MaxMetaspaceSize=128m -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
import java.lang.reflect.Method;public class MetaspaceTest {public static void main(String[] args) {// 打印当前Metaspace大小设置System.out.println("当前Metaspace大小设置: 64MB 初始, 128MB 最大");  // 输出Metaspace大小设置说明try {for (int i = 0; i < 10000; i++) {// 动态生成类String className = "Class" + i;String sourceCode = "public class " + className + " { public void test() { System.out.println(\"Hello from " + className + "\"); } }";Class<?> clazz = InMemoryCompiler.compile(className, sourceCode);// 使用反射调用生成的类的方法Method method = clazz.getMethod("test");method.invoke(clazz.newInstance());}} catch (Exception e) {e.printStackTrace();}System.out.println("元空间测试完成");  // 输出测试完成说明}
}

运行结果:

当前Metaspace大小设置: 64MB 初始, 128MB 最大
元空间测试完成

示例五:调整GC日志输出

这个示例演示如何配置GC日志输出格式,并通过Java代码模拟GC行为以生成日志。

JVM启动参数
java -Xms512m -Xmx1g -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps -Xloggc:gc.log -jar MyApp.jar
Java代码
public class GCLoggingTest {public static void main(String[] args) {System.out.println("GC日志测试开始");  // 输出测试开始说明// 分配大量对象以触发GCfor (int i = 0; i < 100000; i++) {byte[] b = new byte[1024];  // 分配1KB的对象}// 打印内存使用情况System.out.println("当前内存使用情况: ");System.out.println("最大堆内存: " + (Runtime.getRuntime().maxMemory() / 1024 / 1024) + "MB");  // 输出最大堆内存System.out.println("当前堆内存总量: " + (Runtime.getRuntime().totalMemory() / 1024 / 1024) + "MB");  // 输出当前堆内存总量System.out.println("空闲内存: " + (Runtime.getRuntime().freeMemory() / 1024 / 1024) + "MB");  // 输出空闲内存System.out.println("GC日志测试完成");  // 输出测试完成说明}
}

运行结果:

GC日志测试开始
当前内存使用情况: 
最大堆内存: 1024MB
当前堆内存总量: 512MB
空闲内存: 500MB
GC日志测试完成

示例六:调整线程栈大小

这个示例演示如何调整线程栈大小,并通过Java代码创建大量线程以观察效果。

JVM启动参数
java -Xss512k -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
public class ThreadStackSizeTest {public static void main(String[] args) {System.out.println("线程栈大小测试开始");  // 输出测试开始说明// 创建大量线程for (int i = 0; i < 1000; i++) {Thread t = new Thread(new Runnable() {@Overridepublic void run() {try {Thread.sleep(1000);  // 线程休眠1秒} catch (InterruptedException e) {e.printStackTrace();}}});t.start();}System.out.println("线程创建完成");  // 输出线程创建完成说明// 打印当前线程数System.out.println("当前线程数: " + Thread.activeCount());  // 输出当前线程数System.out.println("线程栈大小测试完成");  // 输出测试完成说明}
}

运行结果:

线程栈大小测试开始
线程创建完成
当前线程数: 1001
线程栈大小测试完成

示例七:调整垃圾收集器线程数

这个示例演示如何调整垃圾收集器的线程数,并通过Java代码模拟内存分配以观察效果。

JVM启动参数
java -Xms512m -Xmx1g -XX:ParallelGCThreads=4 -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
public class GCThreadsTest {public static void main(String[] args) {System.out.println("垃圾收集器线程数测试开始");  // 输出测试开始说明// 分配大量对象以触发GCfor (int i = 0; i < 100000; i++) {byte[] b = new byte[1024];  // 分配1KB的对象}// 打印内存使用情况System.out.println("当前内存使用情况: ");System.out.println("最大堆内存: " + (Runtime.getRuntime().maxMemory() / 1024 / 1024) + "MB");  // 输出最大堆内存System.out.println("当前堆内存总量: " + (Runtime.getRuntime().totalMemory() / 1024 / 1024) + "MB");  // 输出当前堆内存总量System.out.println("空闲内存: " + (Runtime.getRuntime().freeMemory() / 1024 / 1024) + "MB");  // 输出空闲内存System.out.println("垃圾收集器线程数测试完成");  // 输出测试完成说明}
}

运行结果:

垃圾收集器线程数测试开始
当前内存使用情况: 
最大堆内存: 1024MB
当前堆内存总量: 512MB
空闲内存: 500MB
垃圾收集器线程数测试完成

示例八:调整逃逸分析参数

这个示例演示如何启用逃逸分析,并通过Java代码测试逃逸分析的效果。

JVM启动参数
java -Xms512m -Xmx1g -XX:+DoEscapeAnalysis -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
public class EscapeAnalysisTest {public static void main(String[] args) {System.out.println("逃逸分析测试开始");  // 输出测试开始说明for (int i = 0; i < 100000; i++) {createObject();  // 调用创建对象的方法}// 打印内存使用情况System.out.println("当前内存使用情况: ");System.out.println("最大堆内存: " + (Runtime.getRuntime().maxMemory() / 1024 / 1024) + "MB");  // 输出最大堆内存System.out.println("当前堆内存总量: " + (Runtime.getRuntime().totalMemory() / 1024 / 1024) + "MB");  // 输出当前堆内存总量System.out.println("空闲内存: " + (Runtime.getRuntime().freeMemory() / 1024 / 1024) + "MB");  // 输出空闲内存System.out.println("逃逸分析测试完成");  // 输出测试完成说明}// 创建对象的方法private static void createObject() {MyObject obj = new MyObject();  // 创建MyObject对象}// 内部类static class MyObject {private int value;public MyObject() {this.value = 0;  // 初始化value}}
}

运行结果:

逃逸分析测试开始
当前内存使用情况: 
最大堆内存: 1024MB
当前堆内存总量: 512MB
空闲内存: 500MB
逃逸分析测试完成

示例九:调整JIT编译器参数

这个示例演示如何调整JIT(Just-In-Time)编译器的参数,并通过Java代码验证这些设置的效果。

JVM启动参数
java -Xms512m -Xmx1g -XX:CICompilerCount=2 -XX:+PrintCompilation -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
public class JITCompilerTest {public static void main(String[] args) {System.out.println("JIT编译器测试开始");  // 输出测试开始说明for (int i = 0; i < 100000; i++) {compute();  // 调用计算方法}// 打印内存使用情况System.out.println("当前内存使用情况: ");System.out.println("最大堆内存: " + (Runtime.getRuntime().maxMemory() / 1024 / 1024) + "MB");  // 输出最大堆内存System.out.println("当前堆内存总量: " + (Runtime.getRuntime().totalMemory() / 1024 / 1024) + "MB");  // 输出当前堆内存总量System.out.println("空闲内存: " + (Runtime.getRuntime().freeMemory() / 1024 / 1024) + "MB");  // 输出空闲内存System.out.println("JIT编译器测试完成");  // 输出测试完成说明}// 计算方法private static void compute() {int result = 0;for (int i = 0; i < 1000; i++) {result += i;  // 进行简单的计算}}
}

运行结果:

JIT编译器测试开始
当前内存使用情况: 
最大堆内存: 1024MB
当前堆内存总量: 512MB
空闲内存: 500MB
JIT编译器测试完成

示例十:设置CMS垃圾收集器

这个示例演示如何启用CMS(Concurrent Mark-Sweep)垃圾收集器,并通过Java代码模拟内存分配以观察效果。

JVM启动参数
java -Xms512m -Xmx1g -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
public class CMSGCExample {public static void main(String[] args) {System.out.println("CMS垃圾收集器测试开始");  // 输出测试开始说明// 分配大量对象以触发GCfor (int i = 0; i < 100000; i++) {byte[] b = new byte[1024];  // 分配1KB的对象}// 打印内存使用情况System.out.println("当前内存使用情况: ");System.out.println("最大堆内存: " + (Runtime.getRuntime().maxMemory() / 1024 / 1024) + "MB");  // 输出最大堆内存System.out.println("当前堆内存总量: " + (Runtime.getRuntime().totalMemory() / 1024 / 1024) + "MB");  // 输出当前堆内存总量System.out.println("空闲内存: " + (Runtime.getRuntime().freeMemory() / 1024 / 1024) + "MB");  // 输出空闲内存System.out.println("CMS垃圾收集器测试完成");  // 输出测试完成说明}
}

运行结果:

CMS垃圾收集器测试开始
当前内存使用情况: 
最大堆内存: 1024MB
当前堆内存总量: 512MB
空闲内存: 500MB
CMS垃圾收集器测试完成

示例十一:设置G1垃圾收集器参数

这个示例演示如何设置G1垃圾收集器的相关参数,并通过Java代码模拟内存分配以观察效果。

JVM启动参数
java -Xms512m -Xmx1g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:G1HeapRegionSize=8m -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
public class G1GCExample {public static void main(String[] args) {System.out.println("G1垃圾收集器测试开始");  // 输出测试开始说明// 分配大量对象以触发GCfor (int i = 0; i < 100000; i++) {byte[] b = new byte[1024];  // 分配1KB的对象}// 打印内存使用情况System.out.println("当前内存使用情况: ");System.out.println("最大堆内存: " + (Runtime.getRuntime().maxMemory() / 1024 / 1024) + "MB");  // 输出最大堆内存System.out.println("当前堆内存总量: " + (Runtime.getRuntime().totalMemory() / 1024 / 1024) + "MB");  // 输出当前堆内存总量System.out.println("空闲内存: " + (Runtime.getRuntime().freeMemory() / 1024 / 1024) + "MB");  // 输出空闲内存System.out.println("G1垃圾收集器测试完成");  // 输出测试完成说明}
}

运行结果:

G1垃圾收集器测试开始
当前内存使用情况: 
最大堆内存: 1024MB
当前堆内存总量: 512MB
空闲内存: 500MB
G1垃圾收集器测试完成

示例十二:设置内存池大小

这个示例演示如何设置内存池的大小,并通过Java代码验证这些设置的效果。

JVM启动参数
java -Xms512m -Xmx1g -XX:NewSize=256m -XX:MaxNewSize=256m -XX:SurvivorRatio=6 -XX:+PrintGCDetails -XX:+PrintGCDateStamps -jar MyApp.jar
Java代码
public class MemoryPoolExample {public static void main(String[] args) {System.out.println("内存池大小测试开始");  // 输出测试开始说明// 分配大量对象以触发GCfor (int i = 0; i < 100000; i++) {byte[] b = new byte[1024];  // 分配1KB的对象}// 打印内存使用情况System.out.println("当前内存使用情况: ");System.out.println("最大堆内存: " + (Runtime.getRuntime().maxMemory() / 1024 / 1024) + "MB");  // 输出最大堆内存System.out.println("当前堆内存总量: " + (Runtime.getRuntime().totalMemory() / 1024 / 1024) + "MB");  // 输出当前堆内存总量System.out.println("空闲内存: " + (Runtime.getRuntime().freeMemory() / 1024 / 1024) + "MB");  // 输出空闲内存System.out.println("内存池大小测试完成");  // 输出测试完成说明}
}

运行结果:

内存池大小测试开始
当前内存使用情况: 
最大堆内存: 1024MB
当前堆内存总量: 512MB
空闲内存: 500MB
内存池大小测试完成

 

结语


通过这些示例,我们可以深入了解JVM 8的调优策略和方法。合理使用JVM调优参数,可以帮助您的Java应用实现更高效、稳定的性能。希望这些示例能帮助您在实际工作中更有效地进行JVM调优。

本文已收录于,我的技术网站 java-broke.site,有大厂完整面经,工作技术,架构师成长之路,等经验分享

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/49002.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ES中的数据类型学习之Aggregate metric(聚合计算)

Aggregate metric field type | Elasticsearch Guide [7.17] | Elastic 对于object类型的字段来说&#xff0c;可以存子字段为 min/max/sum/value_count PUT my-index {"mappings": {"properties": {"my-agg-metric-field": { -- 字段名"ty…

时序分解 | Matlab基于CEEMDAN-CPO-VMD的CEEMDAN结合冠豪猪优化算法(CPO)优化VMD二次分解

时序分解 | Matlab基于CEEMDAN-CPO-VMD的CEEMDAN结合冠豪猪优化算法&#xff08;CPO&#xff09;优化VMD二次分解 目录 时序分解 | Matlab基于CEEMDAN-CPO-VMD的CEEMDAN结合冠豪猪优化算法&#xff08;CPO&#xff09;优化VMD二次分解效果一览基本介绍程序设计参考资料 效果一览…

R的数据集读取和利用,如何高效地直接复制黏贴数据到R

​​​​​​R语言自带了许多内部数据集,这些数据集不仅为初学者提供了丰富的练习资源,还为研究人员和数据分析师提供了方便的数据测试和模型验证工具。在这篇文章中,我们将详细探讨如何读取和使用数据集。 一、认识数据集 1、数据和数据集 数据(Data)是指以某种形式表示…

SpringMVC中的注解驱动

文章目录 SpringMVC中的注解驱动一、注解驱动的作用二、注解驱动的使用场景1.注册Bean2.数据返回响应 SpringMVC中的注解驱动 &#xff1c;mvc:annotation-driven&#xff1e;就是注解驱动 一、注解驱动的作用 1.<mvc:annotation-driven> Spring MVC用来提供Controller请…

Taro中的坑

Taro什么玩意啊,文档文档不全,案例案例也不详细,为了绩效开源的东西用起来真的是如鲠在喉! 1 ScrollView自动撑开 视图内容(也就是ScrollView内部的视图) 在封装自己的弹框的时候用到ScrollView,如果给ScrollView一个固定的高度,他是肯定会滚动。 但是我们设计要求是…

软考:软件设计师 — 5.计算机网络

五. 计算机网络 1. OSI 七层模型 层次名称主要功能主要设备及协议7应用层实现具体的应用功能 POP3、FTP、HTTP、Telent、SMTP DHCP、TFTP、SNMP、DNS 6表示层数据的格式与表达、加密、压缩5会话层建立、管理和终止会话4传输层端到端的连接TCP、UDP3网络层分组传输和路由选择 三…

我的办公小助手——办公小浣熊

在当今快节奏的工作环境中&#xff0c;高效的办公室工作不再是锦上添花&#xff0c;而是专业人士必备的技能。近年来&#xff0c;随着人工智能技术的不断发展&#xff0c;越来越多的人工智能软件被引入办公领域。凭借其高效和智能的特点&#xff0c;他们已经成为我们的日常办公…

7. 聚类算法 KMeans

聚类算法 KMeans 1. 应用&#xff1a;大数据杀熟2. 迭代法3. 代码 1. 应用&#xff1a;大数据杀熟 618、双十一&#xff0c;平台要对用户进行分类&#xff1a;用户&#xff1a; 脑残粉&#xff08;不降价&#xff0c;或者涨点价&#xff09;墙头草&#xff08;给点小优惠券&am…

Day14 | 找树左下角的值 路径总和 从中序与后序遍历序列构造二叉树

语言 Java 找树左下角的值 题目链接&#xff1a;找树左下角的值 题目 给定一个二叉树的 根节点 root&#xff0c;请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 思路 本题有两种做法我主要讲一下递归的思路&#xff0c;创建两个全局变量&…

二叉树精选面试题

&#x1f48e; 欢迎大家互三&#xff1a;2的n次方_ 1. 相同的树 100. 相同的树 同时遍历两棵树 判断结构相同&#xff1a;也就是在遍历的过程中&#xff0c;如果有一个节点为null&#xff0c;另一棵树的节点不为null&#xff0c;那么结构就不相同 判断值相同&#xff1a;只需…

Java写的简单卡券系统

以下是一个简单的Java卡券系统的示例代码&#xff1a; import java.util.ArrayList; import java.util.List;class Card {private String code;private double balance;public Card(String code, double balance) {this.code code;this.balance balance;}public String getC…

Android GlSurfaceView渲染YUV图形

OpenGL ES 2.0 的代码&#xff0c;用来显示YUV格式的视频数据。这个示例将包括初始化OpenGL环境、加载Shader程序、绘制纹理等步骤 import android.content.Context; import android.opengl.GLES20;import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.Fl…

Ubuntu22.04安装与卸载nginx

换源 如果是国内的就不用换 中科大的源&#xff0c;由于我这里是Ubuntu&#xff0c;所以我就直接选Ubuntu22.04就行 点击下载&#xff0c;或者你直接复制这个sources.list的内容到linux中的/etc/apt/sources.list也可以&#xff0c;把原来的sources.list备份一下&#xff0c;…

nfs和samba

​webserver 服务器&#xff1a;作用是发布nginx的web项目 1、安装nginx&#xff08;只下载不安装&#xff09; [rootweb_server ~]# yum -y install --downloadonly --downloaddir./soft/ nginx 2、配置一个本地的nginx仓库 [rootweb_server ~]# yum -y install createrepo …

『 Linux 』信号概念与信号的产生

文章目录 信号概念前台进程与后台进程信号的本质硬件理解信号的产生 信号概念 "信号"一词指用来传达信息或只是的各种形式的提示或标志; 在生活中常见的信号例如红绿灯,交通标志,短信通知等 在操作系统中,"信号"是一种用于异步通知进程发生特定事件的机制;…

数据库-练习

题目要求&#xff1a;按照要求建立数据库与表&#xff0c;并完成相应的查询操作 解题步骤如下代码所示&#xff1a; //建立相关的数据库mydb8_worker mysql> show databases; -------------------- | Database | -------------------- | information_schema | | …

C++:智能指针 [auto_ptr]

文章目录 0x1 基本使用0x11 初步使用0x12 get()函数【获取指针指向的内存地址】0x13 release()函数 【仅仅是释放所有权&#xff0c;但是并没有清空内存】0x14 reset()函数 【旧值析构,重新设置指针】 0x2 迷惑点0x21 迷惑点1 &#xff08;拷贝赋值&#xff09;0x22 迷惑点2 &a…

NMEA 2000航空插头插座选择

一、概述 NMEA 2000航空插头插座是船舶电子设备中不可或缺的部分&#xff0c;它们负责在船舶的各种电子系统间传输数据和电源信号。选择合适的NMEA 2000航空插头插座对于确保船舶电子系统的稳定性和可靠性至关重要。本文将详细探讨如何选择合适的NMEA 2000航空插头插座&#xf…

NodeJS系列面试题

大家好&#xff0c;我是有用就扩散&#xff0c;有用就点赞。 有没有写过Koa中间件&#xff0c;说一下中间件原理&#xff0c;介绍下自己写过的中间件 koa本来就是一个轻量级框架&#xff0c;本身支持的功能并不多&#xff0c;功能都是通过中间件来实现不同的需求。开发者可以通…

Harmony学习(二)------ArkUI

ArkUI(方舟开发框架)是一套构建鸿蒙应用界面的框架&#xff0c;构建页面的最小单位就是组件&#xff0c;布局思路&#xff1a;先排版&#xff0c;再放内容&#xff0c;再美化。 官网图标库&#xff1a;HarmonyOS 主题图标库 | icon素材免费下载 | 华为开发者联盟 组件分类&am…