物联网在养殖业领域的应用——案例分析

作者主页:

知孤云出岫在这里插入图片描述

目录

    • ==作者主页==:
    • 物联网在养殖业领域的应用——案例分析
      • 背景
      • 技术架构
      • 硬件设置
        • 连接多种传感器到微控制器
      • 代码实现
        • 1. Arduino代码:采集多种传感器数据并上传到Thingspeak
        • 2. Python代码:从Thingspeak获取数据并进行综合分析和可视化
      • 结果分析
      • 持续优化
      • 结论

物联网在养殖业领域的应用——案例分析

背景

养殖业在全球食品供应链中占有重要地位。然而,传统养殖方法面临诸多挑战,如疾病传播、饲料浪费、环境污染和高劳动成本。物联网(IoT)技术的应用为这些问题提供了新的解决方案,通过实时监控和数据分析,提高养殖效率和动物福利。本文将以一个综合案例展示物联网在养殖业中的应用,涵盖环境监测、健康监测、饲喂管理和数据分析。

技术架构

  1. 传感器:温湿度传感器(DHT22)、空气质量传感器(MQ135)、光照传感器(BH1750)、运动传感器(加速度计)。
  2. 微控制器:ESP8266,用于读取传感器数据并上传到云平台。
  3. 云平台:Thingspeak或类似平台进行数据存储和可视化。
  4. 数据分析:使用Python进行数据分析和可视化。

硬件设置

连接多种传感器到微控制器

使用DHT22传感器、MQ135空气质量传感器、BH1750光照传感器和ADXL345加速度计传感器与ESP8266微控制器进行数据采集。

DHT22 Sensor        ESP8266
----------------------------
VCC                 3.3V
GND                 GND
Data                D2 (GPIO4)MQ135 Sensor        ESP8266
----------------------------
VCC                 3.3V
GND                 GND
A0                  A0BH1750 Sensor       ESP8266
----------------------------
VCC                 3.3V
GND                 GND
SCL                 D1 (GPIO5)
SDA                 D2 (GPIO4)Accelerometer       ESP8266
----------------------------
VCC                 3.3V
GND                 GND
SCL                 D1 (GPIO5)
SDA                 D2 (GPIO4)

代码实现

1. Arduino代码:采集多种传感器数据并上传到Thingspeak
#include <ESP8266WiFi.h>
#include "DHT.h"
#include <Wire.h>
#include <BH1750.h>
#include <Adafruit_MQ135.h>
#include <Adafruit_MLX90614.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_ADXL345_U.h>#define DHTPIN 4 // D2 pin
#define DHTTYPE DHT22const char* ssid = "your_SSID";
const char* password = "your_PASSWORD";
const char* server = "api.thingspeak.com";
const char* apiKey = "your_THINGSPEAK_API_KEY";DHT dht(DHTPIN, DHTTYPE);
WiFiClient client;
BH1750 lightMeter;
Adafruit_MQ135 mq135(A0);
Adafruit_ADXL345_Unified accel = Adafruit_ADXL345_Unified(12345);void setup() {Serial.begin(115200);delay(10);dht.begin();Wire.begin();lightMeter.begin();accel.begin();Serial.println("Connecting to WiFi...");WiFi.begin(ssid, password);while (WiFi.status() != WL_CONNECTED) {delay(500);Serial.print(".");}Serial.println("WiFi connected");
}void loop() {float h = dht.readHumidity();float t = dht.readTemperature();float lux = lightMeter.readLightLevel();float mq135Value = mq135.read();sensors_event_t event; accel.getEvent(&event);if (isnan(h) || isnan(t) || isnan(lux) || isnan(mq135Value)) {Serial.println("Failed to read from sensors!");return;}if (client.connect(server, 80)) {String postStr = apiKey;postStr += "&field1=";postStr += String(t);postStr += "&field2=";postStr += String(h);postStr += "&field3=";postStr += String(lux);postStr += "&field4=";postStr += String(mq135Value);postStr += "&field5=";postStr += String(event.acceleration.x);postStr += "&field6=";postStr += String(event.acceleration.y);postStr += "&field7=";postStr += String(event.acceleration.z);postStr += "\r\n\r\n";client.print("POST /update HTTP/1.1\n");client.print("Host: api.thingspeak.com\n");client.print("Connection: close\n");client.print("X-THINGSPEAKAPIKEY: " + String(apiKey) + "\n");client.print("Content-Type: application/x-www-form-urlencoded\n");client.print("Content-Length: ");client.print(postStr.length());client.print("\n\n");client.print(postStr);Serial.println("Temperature: " + String(t) + " °C");Serial.println("Humidity: " + String(h) + " %");Serial.println("Light: " + String(lux) + " lx");Serial.println("Air Quality: " + String(mq135Value));Serial.println("Acceleration X: " + String(event.acceleration.x));Serial.println("Acceleration Y: " + String(event.acceleration.y));Serial.println("Acceleration Z: " + String(event.acceleration.z));}client.stop();delay(20000); // 20 seconds delay between updates
}
2. Python代码:从Thingspeak获取数据并进行综合分析和可视化

首先,安装所需的Python库:

pip install requests pandas matplotlib

然后,使用以下Python脚本从Thingspeak获取数据,并进行综合数据分析和可视化:

import requests
import pandas as pd
import matplotlib.pyplot as plt# Thingspeak API URL
channel_id = 'your_CHANNEL_ID'
read_api_key = 'your_READ_API_KEY'
url_template = f'https://api.thingspeak.com/channels/{channel_id}/fields/{{field}}.json?api_key={read_api_key}&results=8000'# Fetch data from Thingspeak
def fetch_data(field):response = requests.get(url_template.format(field=field))data = response.json()timestamps = [entry['created_at'] for entry in data['feeds']]values = [float(entry[f'field{field}']) for entry in data['feeds'] if entry[f'field{field}']]return pd.DataFrame({'Timestamp': pd.to_datetime(timestamps), f'Field{field}': values}).set_index('Timestamp')temperature_df = fetch_data(1)
humidity_df = fetch_data(2)
light_df = fetch_data(3)
air_quality_df = fetch_data(4)
acceleration_x_df = fetch_data(5)
acceleration_y_df = fetch_data(6)
acceleration_z_df = fetch_data(7)# Merge dataframes
df = temperature_df.join([humidity_df, light_df, air_quality_df, acceleration_x_df, acceleration_y_df, acceleration_z_df])# Plot data
plt.figure(figsize=(15, 10))plt.subplot(3, 1, 1)
plt.plot(df.index, df['Field1'], label='Temperature (°C)')
plt.plot(df.index, df['Field2'], label='Humidity (%)')
plt.legend()plt.subplot(3, 1, 2)
plt.plot(df.index, df['Field3'], label='Light (lx)')
plt.plot(df.index, df['Field4'], label='Air Quality')
plt.legend()plt.subplot(3, 1, 3)
plt.plot(df.index, df['Field5'], label='Acceleration X')
plt.plot(df.index, df['Field6'], label='Acceleration Y')
plt.plot(df.index, df['Field7'], label='Acceleration Z')
plt.legend()plt.xlabel('Time')
plt.suptitle('Environmental Monitoring in Pig House')
plt.show()

结果分析

通过上述代码,我们实现了以下功能:

  1. 使用多种传感器采集猪舍的温度、湿度、光照、空气质量和运动数据,并通过ESP8266微控制器将数据上传到Thingspeak云平台。
  2. 使用Python从Thingspeak获取数据,并进行综合数据分析和可视化,展示不同环境参数的变化情况。

持续优化

为了进一步优化,可以考虑以下几方面:

  • 更多传感器:增加其他类型的传感器,如二氧化碳传感器、噪声传感器等,获取更全面的环境数据。
  • 智能控制:结合自动控制系统,根据监测数据实时调节环境条件,如温度、湿度等。
  • 大数据分析:通过机器学习和大数据分析,预测潜在的健康问题和环境变化,制定更精准的管理策略。

结论

通过物联网技术的综合应用,养殖业可以实现更加智能化和可持续的发展,提高生产效率,改善动物福利。本文展示了一个具体的案例,说明如何通过使用多种传感器、微控制器、云平台和数据分析工具,实现对养殖环境的全面监控和智能化管理。随着技术的不断

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/48453.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大模型学习笔记十二:AI产品部署

文章目录 一、如何选择GPU和云服务器厂商&#xff0c;追求最高性价比1&#xff09;根据场景选择GPU2&#xff09;训练或微调所需显卡&#xff08;以Falcon为例子&#xff09;3&#xff09;服务器价格计算器 二、全球大模型了解1&#xff09;llm所有模型2&#xff09;模型综合排…

WSL2 Centos7 Docker服务启动失败怎么办?

wsl 安装的CentOS7镜像,安装了Docker之后,发现用systemctl start docker 无法将docker启动起来。 解决办法 1、编辑文件 vim /usr/lib/systemd/system/docker.service将13行注释掉,然后在下面新增14行的内容。然后保存退出。 2、再次验证 可以发现,我们已经可以正常通过s…

offer题目51:数组中的逆序对

题目描述&#xff1a;在数组中的两个数字&#xff0c;如果前面一个数字大于后面的数字&#xff0c;则这两个数字组成一个逆序对。输入一个数组&#xff0c;求出这个数组中的逆序对的总数。例如&#xff0c;在数组{7,5,6,4}中&#xff0c;一共存在5个逆序对&#xff0c;分别是(7…

给Wordpress添加评分功能到评论表单

今天要 给你的 Wordpress 添加评分功能到评论表单 吗&#xff1f; 评分功能效果图 什么类型的网站需要评分&#xff1f; 资源站教程站其他&#xff0c;我也没想到。。。 但我这个网站&#xff0c;因为是电影类的网站&#xff0c;好像还是有点需要的&#xff0c;所以&#xf…

针对汽车应用而设计的SCT4026D、SCT4062K、SCT3105K、SCT3080A、SCT3060A全新系列碳化硅 (SiC) MOSFET

全新系列碳化硅 (SiC) MOSFET SCT4026DWAHRTL SCT4062KWAHRTL SCT3105KRC15 SCT3080ALHRC11 SCT3080ARC15 SCT3060ARC15 ——明佳达 AEC-Q101 SiC功率MOSFETs是汽车和开关电源的理想选择。SiC功率MOSFETs可以提高开关频率&#xff0c;减少所需的电容、电抗器和其他元件的体积…

【RAG探索第4讲】KG+RAG丨基于知识图谱优化大型语言模型方法

原文链接&#xff1a;【RAG探索第4讲】KGRAG丨基于生物医学知识图谱优化的大型语言模型提示生成方法 一、现有问题&#xff1a; LLMs在处理特定领域或高度专业化查询时缺乏专业知识&#xff0c;导致回答不够准确和可靠。 LLMs可能会产生事实错误&#xff08;即幻觉&#xff0…

【计算机视觉】siamfc论文复现

什么是目标跟踪 使用视频序列第一帧的图像(包括bounding box的位置)&#xff0c;来找出目标出现在后序帧位置的一种方法。 什么是孪生网络结构 孪生网络结构其思想是将一个训练样本(已知类别)和一个测试样本(未知类别)输入到两个CNN(这两个CNN往往是权值共享的)中&#xff0…

深入理解PHP基础【代码审计实战指南】

文章目录 基础语法单双引号的区别前后端分离数据类型PHP常量函数var_dump函数count函数print_r函数**readfile&#xff08;&#xff09;函数****file_get_contents()函数****file_put_contents()函数**header函数fopen函数fread 函数rename函数copy&#xff08;&#xff09;函数…

OCR识别采购单小程序管理助手

千呼新零售2.0系统是零售行业连锁店一体化收银系统&#xff0c;包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体&#xff0c;线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 详细介绍请…

Qt开发网络嗅探器01

引言 随着互联网的快速发展和普及&#xff0c;人们对网络性能、安全和管理的需求日益增 长。在复杂的网络环境中&#xff0c;了解和监控网络中的数据流量、安全事件和性能 问题变得至关重要。为了满足这些需求&#xff0c;网络嗅探器作为一种重要的工具被 广泛应用。 网络嗅探…

【Godot4.2】SVGParser - SVG解析器函数库

概述 这是一个基于GDScript内置XMLParser编写的简易SVG文件解析函数库。 目的就是可以将SVG文件解析为GDSCript可以处理的字典或DOM形式&#xff0c;方便SVG渲染和编辑。 目前还只是一个简易实现版本。还需要一些改进。 函数库源码 # # 名称&#xff1a;SVGParser # 类型…

AI算法23-决策树ID3算法Iterative Dichotomiser 3 | ID3

目录 决策树ID3算法概述 决策树ID3算法简介 决策树ID3算法的原理 决策树ID3算法的核心 决策树ID3算法的本质 决策树ID3算法的基本流程 决策树ID3算法计算过程 步骤1 步骤2 步骤3 决策树ID3算法的代码实现 决策树ID3算法的优缺点 优点 缺点 决策树ID3算法的应用场…

ue5笔记

1 点光源 聚光源 矩形光源 参数比较好理解 &#xff08;窗口里面&#xff09;环境光混合器&#xff1a;快速创造关于环境光的组件 大气光源&#xff1a;太阳光&#xff0c;定向光源 天空大气&#xff1a;蓝色的天空和大气 高度雾&#xff1a;大气下面的高度感的雾气 体积…

【HarmonyOS】HarmonyOS NEXT学习日记:五、交互与状态管理

【HarmonyOS】HarmonyOS NEXT学习日记&#xff1a;五、交互与状态管理 在之前我们已经学习了页面布局相关的知识&#xff0c;绘制静态页面已经问题不大。那么今天来学习一下如何让页面动起来、并且结合所学完成一个代码实例。 交互 如果是为移动端开发应用&#xff0c;那么交…

自主巡航,目标射击

中国机器人及人工智能大赛 参赛经验&#xff1a; 自主巡航赛道 【机器人和人工智能——自主巡航赛项】动手实践篇-CSDN博客 主要逻辑代码 #!/usr/bin/env python #coding: utf-8import rospy from geometry_msgs.msg import Point import threading import actionlib impor…

鸿蒙开发 03 封装 @ohos/axios (最新深度封装)

鸿蒙开发 03 封装 ohos/axios &#xff08;最新深度封装&#xff09; 1、安装 ohos/axios2、开始封装2.1 新建 utils 文件夹 和 api 文件夹2.2 在 utils 文件夹里新建 http.ts2.3 在 api 文件夹里新建 api.ets 3、页面调用4、打印结果 1、安装 ohos/axios ohpm install ohos/a…

linux环境交叉编译openssl库,以使Qt支持https

一.前言 Qt若需要支持https&#xff0c;则需要openssl的支撑,并且要注意&#xff0c;Qt不同版本会指定对应的openssl版本库&#xff0c;比方我用的Qt5.15.10他要求用的openssl版本是1.1.1&#xff0c;你就不能用其他版本&#xff0c;不然基本就是失败报错。 如何查看Qt对应ope…

无人机反制技术常见的有哪些?

随着无人机技术的迅速发展和广泛应用&#xff0c;无人机在民用、军事等领域都发挥着重要作用。然而&#xff0c;无人机的滥用和非法入侵也带来了严重的安全隐患。为了维护国家安全和社会稳定&#xff0c;无人机反制技术应运而生。本文将详细介绍无人机反制技术的常见类型&#…

【Git学习 | 第2篇】在IDEA中使用Git

文章目录 在IDEA中使用Git1. IDEA中配置Git2. 获取Git仓库2.1 本地初始化仓库2.2 从远程仓库克隆 3. 本地仓库操作4. 远程仓库操作5. 分支操作 在IDEA中使用Git 1. IDEA中配置Git IDEA中使用Git&#xff0c;本质上使用的本地安装的Git软件配置步骤&#xff1a; 2. 获取Git仓库…

Unity UGUI 之 RectTransform

本文仅作学习笔记与交流&#xff0c;不作任何商业用途 本文包括但不限于unity官方手册&#xff0c;唐老狮&#xff0c;麦扣教程知识&#xff0c;引用会标记&#xff0c;如有不足还请斧正 Unity - Manual: Rect Transform 1.Rect Transform是什么 2.轴心与锚点的映射关系 首先…