JVM--自动内存管理--JAVA内存区域

1. 运行时数据区域

  1. 灰色的线程共享,白色的线程独享

  2. 白色的独享就是根据个体"同生共死"

  3. 程序计数器:

    1. 是唯一一个没有OOM(内存溢出)的地方

    2. 是线程独享的

    3. 作用:

      1. 是一块较小的内存空间,是当前线程所执行的字节吗的行号指示器

      2. 由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器

  4. java虚拟机栈:

    1. 线程私有的,生命周期和线程相同

    2. 作用

      1. 每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态连接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

      2. 局部变量表:局部变量表存放了编译期可知的各种Java虚拟机基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。

      3. 这些数据类型在局部变量表中的存储空间以局部变量槽(Slot)来表示,其中64位长度的long和double类型的数据会占用两个变量槽,其余的数据类型只占用一个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在栈帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。请读者注意,这里说的“大小”是指变量槽的数量,虚拟机真正使用多大的内存空间(譬如按照1个变量槽占用32个比特、64个比特,或者更多)来实现一个变量槽,这是完全由具体的虚拟机实现自行决定的事情。(如果变量槽是64比特,long和double可能会占用1个变量槽呢)

  5. 本地方法栈:

    1. 本地方法值:非java语言编写的程序

    2. 本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。

  6. 堆:

    1. 是虚拟机所管理的内存中最大的一块

    2. 物理上可以不连续,逻辑上连续就可以

    3. Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java世界里“几乎”所有的对象实例都在这里分配内存。

    4. 从分配内存的角度看,所有线程共享的Java堆中可以划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB),以提升对象分配时的效率。例如:10个人共同分配财产,谁使用谁来财务处拿,如果每次使用都来拿使用的钱,那么就会很慢,如果先给10个人 一人100,使用完来再分配100,那么会将速率提升(TLAB对象创建的一种方式,后面在对象创建会详细说)

    5. 不过无论从什么角度,无论如何划分,都不会改变Java堆中存储内容的共性,无论是哪个区域,存储的都只能是对象的实例,将Java堆细分的目的只是为了更好地回收内存,或者更快地分配内存。

  7. 方法区:

    1. 与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。

  8. 运行时常量池

    1. 运行时常量池是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

    2. 既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError(内存不足)异常。

  9. 直接内存

    1. 并不是虚拟机运行时数据区的一部分,也不是《Java虚拟机规范》中定义的内存区域。

    2. 例如I/O操作的内存,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。

    3. 本机直接内存的分配不会受到Java堆大小的限制,但是,既然是内存,则肯定还是会受到本机总内存(包括物理内存、SWAP分区或者分页文件)大小以及处理器寻址空间的限制

2. HotSpot虚拟机对象探秘

1. 对象的创建:

      1.  对象是如何创建的:

                 在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成 后便可完全确定,为对象分配空间的任务实际上便等同于把一块确定 大小的内存块从Java堆中划分出来。假设Java堆中内存是绝对规整的,所有被使用过的内存都被放在一 边,空闲的内存被放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那 个指针向空闲空间方向挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞Bump The Pointer)。

                产生的问题及解决方案

                    1.内存不规整

                          如果Java堆中的内存并不是规整的,已被使用的内存和空闲的内存相互交错在一起,那 就没有办法简单地进行指针碰撞了

                         虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分 配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称 为“空闲列表”(Free List)

                     2.并发问题:                 

                          对象创建在虚拟机中是非常频繁的行 为,即使仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象 A分配内存,指针还没来得及修改,对象 B 又同时使用了原来的指针来分配内存的情况。
                        解决这个问题有两种可选方案
                          一种是对分配内存空间的动作进行同步处理—— 实际上虚拟机是采用 CAS 配上失败 重试的方式保证更新操作的原子性;
                            另外一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java 堆中预先分配一小块内存,称为本地线程分配缓冲( Thread Local Allocation
Buffer TLAB ),哪个线程要分配内存,就在哪个线程的本地缓冲区中分配,只有本地缓冲区用完 了,分配新的缓存区时才需要同步锁定。

      2. 创建阶段将分配到的内存空间(但不包括对象头)都初始化为零值

      3. 从虚拟机的视角来看,一个新的对象已经产生了。但是从Java程序的视

角看来,对象创建才刚刚开始——构造函数,即Class文件中的<init>()方法还没有执行,所有的字段都

为默认的零值,对象需要的其他资源和状态信息也还没有按照预定的意图构造好。

2. 对象的内存布局(对象的组成):

  1. 分为3部分:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

  2. 对象头信息

    1. 第一类:下边的表对应的是存储锁标志位

    2. 第二类:

      1. 对象头的另外一部分是类型指针,即对象指向它的类型元数据的指针,Java虚拟机通过这个指针来确定该对象是哪个类的实例。

      2. 并不是所有的虚拟机实现都必须在对象数据上保留类型指针,换句话说,查找对象的元数据信息并不一定要经过对象本身

      3. 此外,如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是如果数组的长度是不确定的,将无法通过元数据中的信息推断出数组的大小。(所以由于对象头中有记录数组长度的数据所以查询长度时用的是.length而不是方法)

    3. 实例数据

      1. 是对象真正存储的有效信息,即我们在程序代码里面所定义的各种类型的字段内容,无论是从父类继承下来的,还是在子类中定义的字段都必须记录起来。

      2. 这部分的存储顺序会受到虚拟机分配策略参数(-XX:FieldsAllocationStyle参数)和字段在Java源码中定义顺序的影响。

      3. HotSpot虚拟机默认的分配顺序为longs/doubles、ints、shorts/chars、bytes/booleans、 oops(OrdinaryObject Pointers,OOPs)

    4. 对齐填充:
      1. 这并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。

      2. HotSpot虚拟机的自动内存管理系统要求对象起始地址必须是8字节的整数倍(任何对象的大小都必须是8字节的整数倍。),对象头部分已经被精心设计成正好是8字节的倍数(1倍或者2倍),因此,如果对象实例数据部分没有对齐的话,就需要通过对齐填充来补全。

  3. 对象的访问定位
    1. 定义:创建对象自然是为了后续使用该对象,我们的Java程序会通过栈上的reference数据来操作堆上的具体对象。

    2. 有两种主流的访问形式

      1. 使用句柄访问:Java堆中将可能会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自具体的地址信息

      2. 直接指针访问:Java堆中对象的内存布局就必须考虑如何放置访问类型数据的相关信息,reference中存储的直接就是对象地址,如果只是访问对象本身的话,就不需要多一次间接访问的开销

         

      3. 两种的优势:

        1. 句柄和直接指针:使用句柄来访问的最大好处就是reference中存储的是稳定句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。

        2. 解释:例如在java栈的本地变量表中存有多个reference指向同一对象的,如果对象被移动(地址变化)只需要改变变句柄中的实例数据指针就可以,而reference指向的是对象实例数据的指针,所以不需要变化,而直接指针访问就需要改变每一个reference中的句柄地址

                     同样由于直接指针节省了一次指针定位的时间开销,所以使用直接指针来访问最大的好处就是速度更快      

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/47936.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云监控(华为) | 实训学习day2(10)

spring boot基于框架的实现 简单应用 - 用户数据显示 开发步骤 第一步&#xff1a;文件-----》新建---项目 第二步:弹出的对话框中,左侧选择maven,右侧不选任何内容. 第三步&#xff0c;选择maven后&#xff0c;下一步 第4步 &#xff1a;出现对话框中填写项目名称 第5步&…

全面了解不同GPU算力型号的价格!

这两年人工智能&#xff08;AI&#xff09;、机器学习&#xff08;ML&#xff09;、深度学习和高性能计算&#xff08;HPC&#xff09;领域的快速发展&#xff0c;GPU算力已成为不可或缺的资源。企业、研究机构乃至个人开发者越来越依赖于GPU加速计算来处理大规模数据集和复杂模…

如何将大模型应用到自己的业务中?7种大模型应用方式和代表论文总结

如何将大模型应用落地到自己的业务或工作中&#xff1f;这篇文章整理了7种目前业内最常用的大模型应用方法&#xff0c;以及各个方法的代表论文。通过对各种应用大模型方法的特点对比&#xff0c;找到最适合自己场景的应用方法。 1 Pretrain-Finetune 直接针对下游任务进行全…

Linux介绍和文件管理

一Linux的起源 1.Unix Dennis Ritchie和Ken Thompson发明了C语言&#xff0c;而后写出了Unix的内核 2.Minix MINIX是一种基于微 内核架构的类UNIX计算机操作系统&#xff0c;由 Andrew S. Tanenbaum发明 3.Linux内核 芬兰赫尔辛基大学的研究生Linus Torvalds基于Gcc、 ba…

分布式存储之 ceph 管理操作

一.资源池 Pool 管理 我们已经完成了 Ceph 集群的部署&#xff0c;但是我们如何向 Ceph 中存储数据呢&#xff1f;首先我们需要在 Ceph 中定义一个 Pool 资源池。Pool 是 Ceph 中存储 Object 对象抽象概念。我们可以将其理解为 Ceph 存储上划分的逻辑分区&#xff0c;Pool 由…

ELK日志收集

一、什么是ELK ELK 是由 Elasticsearch、Logstash、Kibana 三个开源软件的组成的一个组合体&#xff0c;ELK 是 elastic 公司研发的一套完整的日志收集、分析和展示的企业级解决方案。 ELK 的好处&#xff1a; ELK 组件在大数据运维系统中&#xff0c;主要可解决的问题如下&…

适用于 Android 的恢复应用程序合集分享

丢失重要文件或数据从来都不是一件有趣的事。这种情况可能发生在您的计算机和笔记本电脑上&#xff0c;也可能发生在您的 Android 智能手机或平板电脑上。然而&#xff0c;尽管 Android 用户可能认为在这种情况下他们可用的选择较少&#xff0c;但用于 Android 数据恢复的应用程…

自定义注解 + Redis 实现业务的幂等性

1.实现幂等性思路 实现幂等性有两种方式&#xff1a; ⭐ 1. 在数据库层面进行幂等性处理&#xff08;数据库添加唯一约束&#xff09;. 例如&#xff1a;新增用户幂等性处理&#xff0c;username 字段可以添加唯一约束. ⭐ 2. 在应用程序层面进行幂等性处理. 而在应用程序…

C#医学影像管理系统源码(VS2013)

目录 一、概述 二、系统功能 系统维护 工作站 三、功能介绍 影像采集 统计模块 专业阅片 采集诊断报告 报告管理 一、概述 医学影像存储与传输系统&#xff08;PACS&#xff09;是一种集成了影像存储、传输、管理和诊断功能的系统。它基于数字化成像技术、计算机技术和…

大模型+编程,未来程序员躺平还是失业?

自然语言大模型编程可以更好地理解用户的需求&#xff0c;然后输出对应代码。 最近英伟达让AI自动写代码的开源神器已上线&#xff0c;Nvidia推出了Code Llama在线体验页面&#xff0c;Code Llama 是 Llama 2 的代码专用版本&#xff0c;无需注册&#xff0c;无需本地部署&…

Jangow

关于靶场环境配置&#xff0c;确实这个靶场存在很大的问题&#xff0c;不仅仅是网络的配置问题&#xff0c;更重要的是明知道如何修改网络环境配置&#xff0c;但是键盘存在很大的问题。许多字符输入不一致。 Vulnhub靶场&#xff0c;Jangow靶机环境找不到ip解决方法。_jangow…

基于springboot新生宿舍管理系统

系统背景 在当今高等教育日益普及的时代背景下&#xff0c;高校作为知识传播与创新的重要基地&#xff0c;其基础设施的智能化管理显得尤为重要。新生宿舍作为大学生活的起点&#xff0c;不仅是学生日常生活与学习的重要场所&#xff0c;也是培养学生独立生活能力和团队合作精神…

Ubuntu 24.04 LTS 桌面安装MT4或MT5 (MetaTrader)教程

运行脚本即可在 Ubuntu 24.04 LTS Noble Linux 上轻松安装 MetaTrader 5 或 4 应用程序&#xff0c;使用 WineHQ 进行外汇交易。 MetaTrader 4 (MT4) 或 MetaTrader 5 是用于交易外汇对和商品的流行平台。它支持各种外汇经纪商、内置价格分析工具以及通过专家顾问 (EA) 进行自…

项目实用linux 操作详解-轻松玩转linux

我之前写过完整的linux系统详解介绍&#xff1a; LInux操作详解一&#xff1a;vmware安装linux系统以及网络配置 LInux操作详解二&#xff1a;linux的目录结构 LInux操作详解三&#xff1a;linux实际操作及远程登录 LInux操作详解四&#xff1a;linux的vi和vim编辑器 LInux操作…

VPN以及GRE和MGRE

VPN VPN — 是虚拟专用网络 通俗地说&#xff0c;就是通过虚拟的手段&#xff0c;将两个独立的网络&#xff0c;穿越一个公共网络进行连接&#xff0c;实现点到点专线的效果&#xff08;可以理解为&#xff1a;一个分公司通过公网和总公司建立点到点的专线连接&#xff09; 现…

数据库理论基础

1.什么是数据库 1.1数据 描述事物的符号记录&#xff0c; 可以是数字、 文字、图形、图像、声音、语言等&#xff0c;数据有多种形式&#xff0c;它们都可以经过数字化后存入计算机。 1.2数据库 存储数据的仓库&#xff0c;是长期存放在计算机内、有组织、可共享的大量数据…

【05】LLaMA-Factory微调大模型——初尝微调模型

上文【04】LLaMA-Factory微调大模型——数据准备介绍了如何准备指令监督微调数据&#xff0c;为后续的微调模型提供高质量、格式规范的数据支撑。本文将正式进入模型微调阶段&#xff0c;构建法律垂直应用大模型。 一、硬件依赖 LLaMA-Factory框架对硬件和软件的依赖可见以下…

Redis高级篇—分布式缓存

目录 Redis持久化 RDB持久化 AOF持久化 RDB与AOF对比 Redis主从 全量同步 增量同步 Redis哨兵 RedisTemplate集成哨兵实现 Redis分片集群 散列插槽 集群伸缩 故障转移 自动故障转移 手动故障转移 RedisTemplate访问分片集群 Redis持久化 RDB持久化 RDB全称Re…

Alpine Linux 轻量级Linux 适合于 docker 容器镜像

Alpine Linux是创始于2010年4月及以前的、一款开源社区开发的、基于musl libc和BusyBox的轻量级Linux发行版&#xff1b;适合用来做路由器、防火墙、VPNs、VoIP 盒子以及服务器的操作系统。 Alpine 的意思是“高山的”。Alpine Linux 围绕 musl libc 和 busybox 构建。这使得它…

LockSupport详解

目录 LockSupport详解1、LockSupport简介LockSupport 类的构造方法LockSupport 类的属性Thread类的parkBlocker属性LockSupport 类的常用方法挂起线程的相关方法唤醒线程的相关方法unpark(Thread thread)方法注意点LockSupport使用示例判断park的条件建议使用while而不是if引出…