解析 Mira :基于 Web3,让先进的 AI 技术易于访问和使用

“Mira 平台正在以 Web3 的方式解决当前 AI 开发面临的复杂性问题,同时保护 AI 贡献者的权益,让他们可以自主拥有并货币化自己的模型、数据和应用,以使先进的 AI 技术更加易于访问和使用。”

AI 代表着一种先进的生产力,它通过深度学习和复杂的算法模型,能够处理和分析大量数据,从而在多个领域提高效率和生产力。OpenAI 的 ChatGPT 和 Sora 模型等先进 AI 技术的出现,不仅重新定义了 AIGC 领域,也激发了全球对 AI 技术的广泛关注和兴趣。

随着 AI 技术的不断进步和普及,越来越多的开发者和企业开始在其产品和服务中集成 AI 特性,一些潜在的领域包括自然语言处理、图像识别、预测分析、自动化决策等,它们能够为用户提供更加个性化、高效和智能的服务体验。虽然 AI 特性的引入有望推动诸多领域向全新的方向发展,但 AI 模型的开发与集成本身包含了十分复杂且繁琐的工作流程,并且开源化资源并不能为开发者带来可靠的支持。

AI 开发者资源生态失衡

AI 模型的开发通常会涉及到十分复杂且繁琐的工作流程,包括进行数据的收集与处理、模型的训练与优化、以及最终的部署。虽然开源的 AI 资源在提升开发效率上能够给予一定的帮助,但开发者往往面临寻找、评估和集成这些资源的挑战,比如开发者仍旧需要对代码的质量和可靠性进行审查与测试,并且这些资源在定制化、灵活性、兼容性以及性能优化等诸多方面缺乏支持。

事实上,从一些 AI 贡献者包括优秀的数据科学家和开发者等角色,正在推动 AI 开源资源领域的发展,但在开源和共享的环境中,贡献者的知识产权通常难以得到充分的保护,并且 AI 领域的市场和商业模式仍在不断发展中,尚未形成成熟的体系来支持贡献者的经济利益。这也导致开源模型和工具经常面临维护和更新不足的问题,最终使得这些资源难以在长期内保持有效性和竞争力。

此外,尽管 AI 技术的潜力巨大,但在一些商业利益等因素下,其应用仍然被限制在资源丰富的大公司和特定技术社区内,比如 Google、Amazon、Microsoft、Facebook 以及 OpenAI 等等,外部开发者和创作者并不具备集成先进 AI 技术的机会,进一步导致先进的 AI 技术难以普及和民主化,垄断效应、技术断层现象严重。

在这里插入图片描述

解决上述困境的最佳方式,是推动 AI 资源更加合理的调配,根深蒂固的 Web2 意识形态似乎不再能满足需求,而 Web3 有望成为更为行之有效的解决方案。目前,Mira 平台正在以 Web3 的方式向该方向进行探索,旨在解决当前 AI 开发面临的复杂性问题,同时保护 AI 贡献者的权益,让他们可以自主拥有并货币化自己的模型、数据和应用,以使先进的 AI 技术更加易于访问和使用。

而目前,Mira 的叙事方向以及发展潜力正在被高度认可。据悉,该项目在今年的 7 月 2 日 宣布完成新一轮规模为 900 万美元的种子轮战略融资,本轮融资由 Bitkraft Ventures、Framework Ventures 领投,并吸引了包括 Velocity.Capital、Accel、Crucible、Folius Ventures、Mechanism Capital、SALT Fund 等知名投资机构以及多位知名天使投资人的参与。与此同时,已经有超过十几个团队正在利用 Mira 的基础设施,在 Web2 和 Web3 领域构建 AI 产品,并计划在未来几个月内陆续推出。

Mira :让先进的 AI 技术易于访问和使用

聚焦于 Mira,其本身提供了一套用户友好的 SDK,旨在解决当今 AI 基础设施的复杂性,通过利用区块链技术,其正在保护 AI 模型的底层数据,并确保资源的正确分配,同时使开发者能够创造 Web2 和 Web3 兼容资源。据悉,该项目其由经验丰富的团队创立和运营,团队成员来自于包括 Accel、Amazon AI、BCG、Uber、Stader 等在内的大型科技公司。

作为一个 API 市场,Mira 允许开发者和创作者通过易于使用的 AI SDK 消费开源AI资源。通过模型、数据和计算的结合,开发者和创作者可以发布 Mira Flows(一种新的 AI 原语),用户可以按使用付费。这些费用无需许可地归属于 Flow 创建者和资源贡献者,并通过 Mira 区块链重新分配。Mira 社区专注于寻找和实施高信号AI改进,处理全球跨软件、游戏、媒体等领域的客户的更新和维护,使他们能够大规模地试验构建 AI 产品。

在这里插入图片描述

整体而言,Mira 平台的一些潜在特点包括:

去中心化及开源:Mira 通过提供一个去中心化的平台,鼓励和促进开源AI资源的共享和使用。

激励机制:通过加密货币激励,Mira 旨在鼓励社区持续维护、评估和推进生态系统,从而促进其增长和功能扩展。

降低复杂性:通过其用户友好的 SDKs,Mira 简化了 AI 开发的复杂性,使开发者和创作者可以更容易地集成和利用先进的 AI 技术。

保障AI贡献者权益:Mira 允许 AI 贡献者保持对其模型、数据和使用的主权所有权,并通过市场货币化这些资源。

Mira 平台的上述特性由以下几个板块提供支持,包括:

SDK 套件

Mira SDK 本身是访问 Mira 平台核心功能的接口,使得开发者能够轻松地将先进的 AI 功能嵌入到他们的应用程序中,而无需深入了解复杂的 AI 基础设施。该组件通过提供直观的 API 和文档,使得即使是非专业的开发者也能快速上手,利用 AI 技术增强他们的产品,并且模块化的设计,允许开发者根据需要选择和集成特定的 AI 功能,而不是一次性引入整个平台。

Mira SDK 本身也包含了一系列预构建的 AI 工作流程,开发者可以直接使用这些现成的工作流程来实现特定的 AI 功能,如文本分析、图像识别、数据处理等。除了预构建的工作流程,Mira SDK 还支持自定义配置和扩展,开发者可以根据自己的需求调整和优化 AI 模型和数据处理流程。同时经过系统性的优化,该 SDK 能够确保在各种设备和平台上都能提供高效和稳定的性能。

与此同时,Mira SDK 本身集成了区块链技术,确保 AI 模型的数据安全和透明性,并基于此也支持去中心化的资源分配和价值流动,并提供一个活跃的开发者社区和客户支持,帮助解决使用 SDK 过程中遇到的问题,并提供持续的更新和改进。

通过使用 Mira SDK,开发者可以节省大量的时间和资源,专注于创新和产品开发,而不是 AI 技术的底层实现,以帮助各种规模的团队和项目实现 AI 技术的快速集成和应用。

Mira Flows

Mira Flows 本身是一种新的 AI 原语,是 Mira 平台的核心组成部分,它是一个创新的 AI 基础设施,旨在通过结合模型、数据和计算资源,为开发者提供易于使用和定制的 AI 工作流程。Mira Flows 作为一种新的 AI 构建块,它通过预配置的指令优化这些资源,以适应特定的最终用途。这些工作流程可以包括从文本到价格的 RAG、语义缓存、文本到图像的产品放置、数据摄取等多种应用。

Mira 平台利用区块链技术来确保 AI 模型的底层数据的安全性,确保资源的正确分配,并使开发者能够创建兼容 Web2 和 Web3 的资源。通过将资源加密货币化,Mira 确保了最佳 Flows 的可信和准确发现,使评估者有“切身利益”来评价 Flows。

AI 市场

Mira 为货币化的 AI 资源提供了一个资源流通市场即 API 市场,Mira允许开发者和创作者通过易于使用的 AI SDKs 市场,消费开源 AI 资源。作为一个创新的在线平台,旨在为开发者、企业和 AI 贡献者提供一个集中的空间,以发现、购买、出售和共享 AI 资源和解决方案市场,并基于去中心化基础设施确保了透明度、安全性和公平性。

通过模型、数据和计算的结合,开发者和创作者可以发布 Mira Flows,用户可以按使用付费,这些费用无需许可地归属于 Flow 创建者和资源贡献者,并通过 Mira 区块链重新分配。

所以 Mira AI 市场本身提供了一个广泛的 AI 资源库,包括预训练的模型、数据集、SDK、API 和各种 AI 工作流程(Flows)。这些资源可以用于各种应用,如自然语言处理、图像识别、数据分析等。开发者可以直接在该市场以去中心化的方式与资源提供者进行交易,并支持自定义和扩展,允许开发者根据自己的需求调整和优化 AI 解决方案。

Mira 市场鼓励社区成员贡献自己的 AI 资源和工具,并通过市场的评价和反馈系统来提高资源的质量,有助于确保市场上的资源是高质量和实用的。与此同时,Mira AI 市场支持多种定价和许可模式,为资源提供者和消费者提供了灵活性,以适应不同的商业需求和预算,这有望进一步帮助处理全球跨软件、游戏、媒体等领域的客户的更新和维护,使他们能够大规模地试验构建 AI 产品。

生态用例

Mira 的第一个生态系统产品 Klok,是一个用于加密货币领域的 AI 决策助手,Klok 利用先进的 AI 技术,为加密货币交易者和投资者提供智能辅助功能,帮助他们做出更明智的投资决策,优化交易策略,并提高交易效率。Klok 的目标是通过 AI 技术提升加密货币交易的体验和效果,为用户提供一个强大的工具,帮助他们在复杂多变的加密货币市场中提升收益。目前,Klok 产品处于封闭测试阶段。

在这里插入图片描述

与此同时,上文提到目前已有十几个团队利用 Flows 将开源 AI 能力集成到系列 Web2、Web3 应用程序中,一些应用计划在未来几个月内推出。

为 AI 应用向下一阶段发展提供基础

据IDC发布的《全球人工智能支出指南》显示,2022年全球人工智能 IT 总投资规模为 1288 亿美元,预计到 2027 年将增至4236亿美元,CAGR 约为 26.9%。这表明全球范围内对 AI 技术的投资正在持续快速增长。同时,根据 Gartner 的预测,到 2026 年,超过 80% 的企业将生成式AI、模型和应用程序纳入其运营中,而目前这一比例还不到 5 %。这同样表明未来几年内,生成式 AI 等的采用率将显著增长,并有望加速 AI 技术的广泛应用和集成。

另一面,AI 的规模性采用需要由开发者群体来不断地推动,而让优质的 AI 资源、设施更广泛与开发者群体进行匹配,才是推动 AI 规模性采用的关键步骤。

事实上,Mira 正在为上述趋势的发展提供动力,其通过提供用户友好的 SDKs,简化了 AI 开发、集成步骤,使得开发者更容易地创建和维护 AI 产品,并通过推出 API 市场,使开发者能够更容易地发现和使用高质量的开源 AI 资源,降低 AI 项目的开发周期。基于区块链技术,Mira 在保障开源社区贡献者保留对其模型、数据和使用的主权所有权,货币化其资源和劳动获取匹配的激励的同时,社区成员还能够持续地维护、评估和推进AI资源的发展,确保这些资源保持最新和最有效,并为广泛的开发者和创作者提供访问和集成先进 AI 技术的机会。

随着 Mira 生态的全面启动并不断进行创新的探索,也将不断为 AI 应用向下一阶段发展提供基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/47116.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树问题,两种解决方法(1遍历 2直接定义名字功能递归

1第一种方法就是另写一个traverse方法,2第二种方法就是把函数名当成已经实现的功能,直接写 1、翻转二叉树 class Solution {public TreeNode invertTree(TreeNode root) {if(rootnull) return null;TreeNode leftinvertTree(root.left);TreeNode righti…

博客都在使用的主题切换使用vue2实现思路

效果展示 步骤 1-变量定义css主题色 2-html初始化主题样式 3-vuex存储主题变量,点击触发修改根元素html的样式 4-method触发方法 mutation使用commit action使用dispatch 5-App组件引入该css文件,使用即可 6-将其加入本地存储,刷新后保持主…

烟雾监测与太阳能源:实验装置在其中的作用

太阳光在烟雾中的散射效应研究实验装置是一款模拟阳光透过烟雾环境的设备。此装置能帮助探究阳光在烟雾中的传播特性、散射特性及其对阳光的影响。 该装置主要包括光源单元、烟雾发生装置、光学组件、以及系统。光源单元负责产生类似于太阳光的光线,通常选用高亮度的…

华为OD算法题汇总

60、计算网络信号 题目 网络信号经过传递会逐层衰减,且遇到阻隔物无法直接穿透,在此情况下需要计算某个位置的网络信号值。注意:网络信号可以绕过阻隔物 array[m][n],二维数组代表网格地图 array[i][j]0,代表i行j列是空旷位置 a…

Mamori.xyz:基于机器学习的区块链价值提取系统

Mamori.xyz 是一个基于机器学习的自动化区块链价值提取系统,其开创一种通用路径查找器,该工具可用于检测和防御潜在的未知安全风险,Mamori.xyz 也将其称为“未知的未知”,即智能合约中的零日漏洞和新出现的与区块链相关的软件问题…

leetcode-383.赎金信

题源 383.赎金信 题目描述 给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。如果可以,返回 true ;否则返回 false 。magazine 中的每个字符只能在 ransomNote 中使用一次。示例 1&…

Qt Creator:C++与Python混合编程

目录 1.前言 2.调用Python前的准备 3.在Qt Creator中配置Python库 4.在Qt Creator中添加Python代码 5.在Qt Creator中运行Python代码 6.运行效果 前言 在进行软件开发过程中,我们一般都是在特定的环境下特定的开发语言下进行编程。但是在开发中总有特殊情况&#xf…

微调 Florence-2 - 微软的尖端视觉语言模型

Florence-2 是微软于 2024 年 6 月发布的一个基础视觉语言模型。该模型极具吸引力,因为它尺寸很小 (0.2B 及 0.7B) 且在各种计算机视觉和视觉语言任务上表现出色。 Florence 开箱即用支持多种类型的任务,包括: 看图说话、目标检测、OCR 等等。虽然覆盖面…

前缀和算法——部分OJ题详解

(文章的题目解释可能存在一些问题,欢迎各位小伙伴私信或评论指点(双手合十)) 关于前缀和算法 前缀和算法解决的是“快速得出一个连续区间的和”,以前求区间和的时间复杂度是O(N),使用前缀和可…

【精品资料】大数据可视化平台数据治理方案(626页WORD)

引言:大数据可视化平台的数据治理方案是一个综合性的策略,旨在确保大数据的质量、安全性、可访问性和合规性,从而支持高效的数据分析和可视化过程。 方案介绍: 大数据可视化平台的数据治理方案是一个综合性的策略,旨在…

微软的vscode和vs2022快捷键官网链接

vscode官方文档:https://code.visualstudio.com/docs/ vscode快捷键官方文档:https://code.visualstudio.com/docs/getstarted/keybindings vs2022官方文档:https://learn.microsoft.com/zh-cn/visualstudio/ide/?viewvs-2022 vscode快捷键官方文档:https://learn.microsoft.c…

Linux编程(通信协议---udp)

UDP(用户数据报协议)是一种无连接的网络协议,主要用于快速传输数据。以下是UDP协议的一些主要特点: 1. **无连接**:UDP是无连接的协议,这意味着在数据传输之前不需要建立连接。每个UDP数据包都是独立的&am…

Spark的动态资源分配算法

文章目录 前言基于任务需求进行资源请求的整体过程资源申请的生成过程详解资源申请的生成过程的简单例子资源调度算法的代码解析 申请资源以后的处理:Executor的启动或者结束对于新启动的Container的处理对于结束的Container的处理 基于资源分配结果进行任务调度Pen…

win10删除鼠标右键选项

鼠标右键菜单时,发现里面的选项特别多,找一下属性,半天找不到。删除一些不常用的选项,让右键菜单变得干净整洁。 1、按下键盘上的“winR”组合按键,调出“运行”对话框,输入“regedit”命令,点击…

linux后门教程

linux后门教程 alias 用法 系统默认别名:alias 设置别名:alias lsls -laih 删除别名:unalias ls **加参数:**alias ls‘ls -laih;pwd’ 注意 系统启动默认加载的配置文件 /etc/profile 切换用户就会执行/etc/profile /etc/bash…

Python 实验五 高级数据结构

一、实验目的 (1)掌握序列的基本操作 (2)掌握集合、字典的基本操作 二、实验环境 联网计算机一台/每人,内装Windows 7以上操作系统和安装Python 3.7集成开发环境IDLE。 三、实验内容 Sy5-1 列表实现。编写一个…

minIO集成springboot

问题 minIO与spring集成。 步骤 创建桶 创建key 找到创建账号页面,如下图: 点击创建,如下图: 设置如下权限: {"Version": "2012-10-17","Statement": [{"Effect": &q…

codeforces round 948 div2(a,b,c)

题目链接 A #include<bits/stdc.h>using namespace std;#define int long long #define PII pair<int,int>void solve() {int n,m;cin>>n>>m;if(n&1){if((m&1)&&m>1&&m<n)cout<<"YES"<<\n;else…

python的异常

异常 定义 异常是程序执行中发生的错误事件&#xff0c;它可以打断正常的指令流。Python提供了强大的异常处理机制&#xff0c;允许程序在发生错误时执行某些替代指令&#xff0c;而不是直接崩溃。 类型 TypeError&#xff1a;类型错误&#xff0c;比如尝试将字符串和整数相加。…

Jenkins安装nodeJs环境

首先插件市场安装nodeJS插件&#xff0c;我这里已经安装了&#xff0c;没安装的话在 Available plugins 中搜索安装 安装完成后需要下载需要的nodejs版本 新增完成就可以在构建的时候选择当前版本号了