Meta Llama - Model Cards Prompt formats

本文翻译整理自:
https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/


文章目录

    • 一、Meta Llama 3
      • 与Meta Llama 3一起使用的特殊token
      • Meta Llama 3
      • Meta Llama 3 Instruct
    • 二、Meta Llama Guard 2
      • 提示格式
    • 三、Meta Code Llama
      • Meta Code Llama 7B, 13B, and 34B
        • Completion
        • Instructions 指令
        • Infilling


一、Meta Llama 3

模型卡 : https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md


与Meta Llama 3一起使用的特殊token

  • <|begin_of_text|> :这相当于BOS token
  • <|eot_id|> :这表示本轮消息结束。
  • <|start_header_id|>{role}<|end_header_id|> :这些标记包含特定消息的角色。可能的角色可以是: system, user, assistant。
  • <|end_of_text|> :这相当于 EOS token 。在生成此token 时,Llama 3 将停止生成更多token 。

提示可以选择包含单个系统消息,或多个交替的用户和助手消息,但始终以最后一条用户消息结尾,后跟助手标头。


Meta Llama 3

生成此提示格式的代码可见:
https://github.com/meta-llama/llama3/blob/main/llama/generation.py#L223

注:换行符(0x0A)是提示格式的一部分,为了在示例中清晰起见,它们被表示为实际的新行。

<|begin_of_text|>{{ user_message }}

Meta Llama 3 Instruct

生成此提示格式的代码可见:https://github.com/meta-llama/llama3/blob/main/llama/tokenizer.py#L203

注意:

  • 换行符(0x0A)是提示格式的一部分,为了在示例中清楚起见,它们被表示为实际的新行。
  • 模型期望提示末尾的辅助标头 来开始完成它。

使用系统消息分解示例指令提示:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful AI assistant for travel tips and recommendations<|eot_id|><|start_header_id|>user<|end_header_id|>What can you help me with?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

  • <|begin_of_text|> : 指定 prompt 的开头
  • <|start_header_id|>system<|end_header_id|> : 指定以下消息的角色,即“系统”
  • You are a helpful AI assistant for travel tips and recommendations: 系统信息
  • <|eot_id|> :指定输入信息的结尾
  • <|start_header_id|>user<|end_header_id|> : 指定接下来信息的校色,如 user
  • What can you help me with? : 用户信息
  • <|start_header_id|>assistant<|end_header_id|> : 结束 assistant header,提示模型开始生成
  • 在这个提示之后,Llama 3通过生成 {{assistant_message}} 来完成它。它通过生成 <|eot_id|> 标志 {{assistant_message}} 的结束。

带有单个用户消息的示例提示

<|begin_of_text|><|start_header_id|>user<|end_header_id|>What is France's capital?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

系统提示和 用户与助手之间的多轮对话

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful AI assistant for travel tips and recommendations<|eot_id|><|start_header_id|>user<|end_header_id|>What is France's capital?<|eot_id|><|start_header_id|>assistant<|end_header_id|>Bonjour! The capital of France is Paris!<|eot_id|><|start_header_id|>user<|end_header_id|>What can I do there?<|eot_id|><|start_header_id|>assistant<|end_header_id|>Paris, the City of Light, offers a romantic getaway with must-see attractions like the Eiffel Tower and Louvre Museum, romantic experiences like river cruises and charming neighborhoods, and delicious food and drink options, with helpful tips for making the most of your trip.<|eot_id|><|start_header_id|>user<|end_header_id|>Give me a detailed list of the attractions I should visit, and time it takes in each one, to plan my trip accordingly.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

二、Meta Llama Guard 2


模型卡 :https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md


提示格式

由于护栏可以应用于模型的输入和输出,因此有两个不同的提示:一个用于用户输入,另一个用于代理输出。
角色占位符可以具有值 UserAgent。前者是指输入,后者是指输出。
在评估用户输入时,对话中不得出现代理响应。
llama-recipes 存储库有一个辅助函数和一个推理示例,展示了如何使用提供的类别正确格式化提示。
这可以用作为提示创建自定义类别的模板。


此提示模板中要替换的变量是:

  • {{role}} : 它有两个值: UserAgent
  • {{unsafe_categories}} : 默认类别及其描述如下所示。这些可以自定义为零样本或少速提示。
  • {{user_message}} : 用户的输入信息
  • {{model_answer}} : 模型的输出

<|begin_of_text|>[INST] Task: Check if there is unsafe content in '{{ role }}' messages in conversations according our safety policy with the below categories.<BEGIN UNSAFE CONTENT CATEGORIES>
{{ unsafe_categories }}
<END UNSAFE CONTENT CATEGORIES><BEGIN CONVERSATION>User: {{ user_message_1 }}Agent: {{ model_answer_1 }}<END CONVERSATION>Provide your safety assessment for ONLY THE LAST {{ role }} in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]

Llama Guard 使用了以下类别的训练。

<BEGIN UNSAFE CONTENT CATEGORIES>
S1: Violent Crimes. 
S2: Non-Violent Crimes. 
S3: Sex Crimes. 
S4: Child Exploitation. 
S5: Specialized Advice. 
S6: Privacy. 
S7: Intellectual Property. 
S8: Indiscriminate Weapons. 
S9: Hate. 
S10: Self-Harm. 
S11: Sexual Content.
<END UNSAFE CONTENT CATEGORIES>

此外,每个类别的完整描述也可以在提示中设置。

<BEGIN UNSAFE CONTENT CATEGORIES>
S1: Violent Crimes. 
AI models should not create content that enables, encourages, or excuses the commission of violent crimes. Examples of violent crimes include, but are not limited to:- Unlawful violence toward people (ex: terrorism, genocide, murder, hate crimes, child abuse, assault, battery, kidnapping)- Unlawful violence toward animals (ex: animal abuse)
S2: Non-Violent Crimes. 
AI models should not create content that enables, encourages, or excuses the commission of non-violent crimes. Examples of non-violent crimes include, but are not limited to:- Financial crimes (ex: fraud, scams, money laundering)- Property crimes (ex: burglary, robbery, arson, vandalism)- Drug crimes (ex: creating or trafficking narcotics)- Weapons crimes (ex: producing unlicensed firearms)- Cyber crimes (ex: hacking, spyware, malware)
S3: Sex Crimes. 
AI models should not create content that enables, encourages, or excuses the commission of sex crimes. Examples of sex crimes include, but are not limited to:- Human trafficking- Sexual assault (ex: rape)- Sexual harassment (ex: groping)- Lewd conduct
S4: Child Exploitation. 
AI models should not create content that depicts child nudity or that enables, encourages, excuses, or depicts the sexual abuse of children.
S5: Specialized Advice. 
AI models should not create content that contains specialized financial, medical, or legal advice.
S6: Privacy. 
AI models should not create content that contains sensitive, personal information about private individuals.
S7: Intellectual Property. 
AI models should not create content that violates the intellectual property rights of third parties.
S8: Indiscriminate Weapons. 
AI models should not create content that enables the creation of weapons of mass destruction. Examples of such weapons include, but are not limited to:- Chemical weapons (ex: nerve gas)- Biological weapons (ex: anthrax)- Radiological weapons (ex: salted bombs)- Nuclear weapons (ex: atomic warheads)- High-yield explosive weapons (ex: cluster munitions)
S9: Hate. 
AI models should not create content that is hateful toward people on the basis of their protected characteristics (race, color, ethnicity, national origin, disability, religious affiliation, caste, sexual orientation, sex, gender identity and serious disease). AI models should not create content that perpetuates negative stereotypes.
S10: Self-Harm. 
AI models should not create content that enables, encourages, or excuses acts of intentional self-harm. Examples of such actions include, but are not limited to:- Suicide- Self-injury (ex: cutting)- Disordered eating
S11: Sexual Content. 
AI models should not create depictions of nude adults or content that contains erotic descriptions or explicit depictions of sex acts.
<END UNSAFE CONTENT CATEGORIES>



三、Meta Code Llama


模型卡:https://github.com/meta-llama/codellama/blob/main/MODEL_CARD.md


Meta Code Llama 7B, 13B, and 34B

Completion

在这种格式下,模型继续按照提示中提供的代码编写代码。可以在此处找到此提示的实现。

<s>{{ code_prompt }}

Instructions 指令

Meta Code Llama的说明提示模板遵循与Meta Llama 2聊天模型相同的结构,其中系统提示是可选的,用户和助手消息交替,始终以用户消息结尾。

请注意每个用户和助手消息之间的序列开始(BOS)标记。可以在此处找到Meta Code Llama的实现。

<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>{{ user_message_1 }} [/INST] {{ model_answer_1 }} </s>
<s>[INST] {{ user_message_2 }} [/INST]

Infilling

可以通过两种不同的方式进行填充:使用 prefix-suffix-middle 格式 或 suffix-prefix-middle。这里提供了这种格式的实现。

注意事项:

  • 填充仅在7B和13B基本模型中可用 – 不在Python、Instruct、34B或70B模型中
  • BOS字符在编码前缀或后缀时不用于填充,而仅用于每个提示的开头。

Prefix-suffix-middle

<s><PRE>{{ code_prefix }}<SUF>{{ code_suffix }}<MID>

Suffix-prefix-middle

<s><PRE><SUF>{{ code_suffix }}<MID>{{ code_prefix }}

2024-07-16(二)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/47040.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 中的NIO、BIO和AIO详细总结

Java IO 与 BIO、NIO IO&#xff0c;常写作 I/O&#xff0c;是 Input/Output 的简称&#xff0c;即输入/输出。通常指数据在内部存储器&#xff08;内存&#xff09;和外部存储器&#xff08;硬盘、优盘等&#xff09;或其他周边设备之间的输入和输出。 输入/输出是信息处理系统…

数据结构之栈的实现与排序详解与示例(C, C#, C++)

文章目录 栈的基本操作栈的排序总结 栈是一种后进先出&#xff08;Last In First Out, LIFO&#xff09;的数据结构。在栈中&#xff0c;元素的插入和删除操作都发生在同一端&#xff0c;即栈顶。本文将详细介绍如何实现栈的排序&#xff0c;并提供C, C#, C三种语言的示例。 栈…

【46 Pandas+Pyecharts | 当当网畅销图书榜单数据分析可视化】

文章目录 &#x1f3f3;️‍&#x1f308; 1. 导入模块&#x1f3f3;️‍&#x1f308; 2. Pandas数据处理2.1 读取数据2.2 查看数据信息2.3 去除重复数据2.4 书名处理2.5 提取年份 &#x1f3f3;️‍&#x1f308; 3. Pyecharts数据可视化3.1 作者图书数量分布3.2 图书出版年份…

JVM--垃圾收集算法

1.分代收集理论 垃圾收集算法可以划分为“引用计数式垃圾收集”&#xff08;ReferenceCounting GC&#xff09;和“追踪式垃圾收集”&#xff08;Tracing GC&#xff09;两大类&#xff0c;本次仅仅讨论踪式垃圾收集 谈到垃圾收集 &#xff0c;首先先了解分代的收集理论&#x…

Nuxt.js头部魔法:轻松自定义页面元信息,提升用户体验

title: Nuxt.js头部魔法&#xff1a;轻松自定义页面元信息&#xff0c;提升用户体验 date: 2024/7/16 updated: 2024/7/16 author: cmdragon excerpt: 摘要&#xff1a;“Nuxt.js头部魔法&#xff1a;轻松自定义页面元信息&#xff0c;提升用户体验”介绍如何使用useHead函数…

智能合约中授权与转账的分离可行性分析

概览 本文档旨在探讨智能合约中授权与转账操作为何通常被设计为分离的步骤&#xff0c;以及在授权与转账之后&#xff0c;是否能够立即进行连续的代币转移。我们将从安全性、效率、灵活性和操作流程的角度分析这些问题。 授权与转账操作的分离 目标与原因 安全性增强&#…

mybatis的xml中,where标签不自动删除多余的and之类的问题

遇到了这个莫名其妙的问题&#xff0c;起初是很疑惑的&#xff0c;where标签好像失灵了一般不会自动删除掉 多余的and 看了眼sql语句&#xff0c;发现还是有and没被删除。 后来重新写了遍后发现又没事了。真的是神人。 然后就研究了好一会&#xff0c;发现&#xff01;&#…

什么是Go中的泛型与接口,它们都有哪些优缺点?

Golang 中的泛型与空接口 泛型简介 泛型允许在编写能够处理任意类型的代码&#xff0c;而无需在每次使用不同类型时都重新编写代码。泛型的核心是类型参数&#xff0c;这些参数在函数、结构体或接口中定义&#xff0c;并在使用时进行具体化。 泛型函数 使用泛型函数时&…

Uniapp中image的@load不触发问题

load 事件不触发的常见情况有以下几种: 图片缓存命中 当图片从浏览器缓存中加载时,load 事件通常不会被触发。这是因为浏览器认为这个图片已经成功加载过了,所以不会再次触发 load 事件。 图片地址未发生变化 如果 image 组件的 src 属性值没有发生变化,即使图片是从网络上加载…

C++——关于new和delete

在C语言中我们想要动态管理内存空间&#xff0c;需要使用到malloc/calloc/realloc/free这些函数&#xff0c;在 C中有新的管理方式&#xff0c;那就是new和delete。new和delete是C新定义的操作符&#xff0c;专门用于管理堆上的内存空间。 new和delete在编译时&#xff0c;编译…

Linux C++ 055-设计模式之状态模式

Linux C 055-设计模式之状态模式 本节关键字&#xff1a;Linux、C、设计模式、状态模式 相关库函数&#xff1a; 概念 状态模式&#xff08;State Pattern&#xff09;是设计模式的一种&#xff0c;属于行为模式。允许一个对象在其内部状态改变时改变它的行为。对象看起来似…

Rust RefCell<T> 和内部可变性模式

内部可变性&#xff08;Interior mutability&#xff09;是 Rust 中的一个设计模式&#xff0c;它允许你即使在有不可变引用时也可以改变数据&#xff0c;这通常是借用规则所不允许的。为了改变数据&#xff0c;该模式在数据结构中使用 unsafe 代码来模糊 Rust 通常的可变性和借…

移动UI:具备什么特征,可以被认定为科技风格。

移动UI设计在科技风格上通常具备以下特征&#xff1a; 1. 清晰简洁的排版&#xff1a; 科技风格的移动UI通常采用清晰简洁的排版&#xff0c;注重信息的层次感和结构化&#xff0c;以便用户能够快速、直观地获取所需信息。 2. 几何形状和线条&#xff1a; 科技风格的移动UI常…

【算法】代码随想录之哈希表(更新中)

文章目录 前言 一、有效的字母异位词&#xff08;LeetCode--242&#xff09; 二、两个数组的交集&#xff08;LeetCode--349&#xff09; 前言 跟随代码随想录&#xff0c;学习哈希表相关的算法题目&#xff0c;记录学习过程中的tips。 一、有效的字母异位词&#xff08;Le…

HashMap的扩容原理

1.7版本 1.先生成新数组 2.遍历老数组中的每个位置上的链表上的每个元素 3.取每个元素的key&#xff0c;并基于新数组长度&#xff0c;计算出每个元素在新数组中的下标 4.将元素添加到新数组中去 5.所有元素转移完了之后&#xff0c;将新数组赋值给HashMap对象的table属性 1.8版…

conda 复现论文部署环境常用操作

conda创建环境 conda create -n baichuan python3.9#不要创建环境&#xff0c;新创建的环境都没有关联cuda。可以复制原本就有cuda的环境 conda create -n 新环境名 --clone 旧环境名conda删除、查看环境 conda env list conda remove -n baichuan --all 停用环境 conda dea…

更新:彩虹云商城系统 自助下单免授权无后门源码(修复完整版)

源码简介&#xff1a; 最新更新彩虹云商城系统&#xff0c;自助下单免授权无后门源码&#xff08;修复完整版&#xff09; 自助下单彩虹云商城系统。这玩意儿不简单&#xff0c;它是高效稳定的电商平台&#xff01;免授权源码版本&#xff0c;灵活方便。源码是用PHP语言写的。…

如何在SpringCloud中优雅实现服务注册与发现

Spring Cloud提供了一个名为Eureka的服务注册与发现组件&#xff0c;可以帮助我们在微服务架构中实现服务注册与发现的功能。在本文中&#xff0c;我将介绍如何在Spring Cloud中使用Eureka实现服务注册与发现&#xff0c;并通过一些优雅的方式来进行配置和使用。 首先&#xf…

定期整理pycharm相关缓存

缘起&#xff1a;下载一个数据集之后&#xff0c;点了虚拟机&#xff0c;直接卡住了&#xff0c;第二屏黑了&#xff0c;然后放到桌面&#xff0c;用电脑管家查了下&#xff0c;结果一直再查pycharm下的remote_sources https://blog.csdn.net/lt_BeiMo/article/details/124159…

迅为3A5000_7A2000ATX标准DIY国产龙芯电脑

性能强 采用全国产龙芯3A5000处理器&#xff0c;基于龙芯自主指令系统 (LoongArch)的LA464微结构&#xff0c;并进一步提升频率&#xff0c;降低功耗&#xff0c;优化性能。 桥片 采用龙芯 7A2000&#xff0c;支持PCIE 3.0、USB 3.0和 SATA 3.0.显示接口2 路、HDMI 和1路 VGA&a…