parallel 详细解析 Java 8 Stream API 中的 parallel 方法

详解Java Stream的并行处理(Parallel)

Java 8 引入了Stream API,提供了一种便捷而高效的方式来处理集合数据。Stream API使得对数据集合的操作变得更为简洁和易读。
其中,并行流(parallelStream)是Stream API的一个重要特性,能够利用多核处理器的优势并行处理数据,提升处理大数据量时的效率。

1. 什么是并行流?

并行流是Stream API的一种扩展,允许数据源在多个线程上并行处理元素。
在集合数据量较大或需要对数据进行密集计算时,使用并行流能够显著提高程序的性能。
它通过默认的ForkJoinPool实现多线程处理,将一个任务分割成多个子任务并行执行,然后将结果合并。

2. 如何创建并使用并行流?

使用并行流非常简单,只需在普通的Stream对象上调用.parallel()方法即可将其转换为并行流。例如:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 创建并行流
List<Integer> parallelResult = numbers.parallelStream().map(x -> x * x).collect(Collectors.toList());

在这个例子中,parallelStream()方法将numbers列表转换为一个并行流,然后对每个元素进行平方操作,并使用.collect(Collectors.toList())将结果收集到新的列表中。

3. 并行流的优势与适用场景

性能提升:对于大数据集合或需要密集计算的操作,使用并行流能够利用多核处理器,加速数据处理过程。
简化并发编程:相比手动编写多线程代码,使用并行流能够避免显式地管理线程,简化并发编程的复杂性。
适用于大规模数据处理:当需要对大量数据进行过滤、映射、排序或聚合等操作时,使用并行流能够更快地完成任务。

4. 并行流的注意事项与限制

线程安全性:并行流的操作需要确保处理的数据是线程安全的,避免因为多线程同时修改数据而引发的问题。
避免阻塞操作:在使用并行流时,应避免在操作中引入可能导致线程阻塞的操作,以充分利用并行执行的优势。
性能评估与调优:并行流的性能受多种因素影响,包括数据量、硬件配置以及操作的复杂度,因此在使用并行流时需要进行性能评估和可能的调优。

5. 示例:并行流的应用场景

示例一:计算元素平方和

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 使用并行流计算平方和
int sumOfSquaresParallel = numbers.parallelStream().map(x -> x * x).reduce(0, Integer::sum);
System.out.println("并行流计算平方和:" + sumOfSquaresParallel);

在这个例子中,使用并行流可以加速对大量数据进行平方和计算的操作。

示例二:并行排序

List<Integer> numbers = Arrays.asList(10, 5, 7, 1, 8, 3, 9, 2, 4, 6);// 使用并行流排序
List<Integer> sortedNumbersParallel = numbers.parallelStream().sorted().collect(Collectors.toList());
System.out.println("并行流排序结果:" + sortedNumbersParallel);

通过并行流,可以有效地在多线程环境下对数据进行排序,提高排序算法的执行效率。

示例三:并行流在大数据处理中的应用

假设我们需要对一个大型数据集进行复杂的数据转换和聚合操作。

import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;public class ParallelExample {public static void main(String[] args) {// 生成一个大数据集,例如从1到1000000的整数List<Integer> largeData = IntStream.rangeClosed(1, 1_000_000).boxed().collect(Collectors.toList());// 使用串行流计算所有元素的平方和long startTime = System.currentTimeMillis();int sumOfSquaresSerial = largeData.stream().map(x -> x * x).reduce(0, Integer::sum);long endTime = System.currentTimeMillis();System.out.println("串行流计算平方和耗时:" + (endTime - startTime) + " 毫秒");// 使用并行流计算所有元素的平方和startTime = System.currentTimeMillis();int sumOfSquaresParallel = largeData.parallelStream().map(x -> x * x).reduce(0, Integer::sum);endTime = System.currentTimeMillis();System.out.println("并行流计算平方和耗时:" + (endTime - startTime) + " 毫秒");}
}

在上述示例中,通过并行流可以看到在大数据量计算中的性能提升,尤其是对于需要执行密集计算的任务,如平方操作。

这些例子展示了如何简单而直观地使用并行流来提升Java程序的性能,特别是在处理大规模数据时。在实际应用中,选择合适的流操作方式(串行流或并行流)可以显著影响程序的执行效率和响应时间。

6. 总结

并行流是Java Stream API强大的特性之一,能够轻松实现多核处理器的并行计算能力,从而加速对大数据量集合的处理。

在使用并行流时,需要注意线程安全性和性能评估,以充分发挥其优势。通过合理地使用并行流,可以使Java程序在处理大规模数据时更为高效和可扩展。

希望本文能帮助您更好地理解并行流的概念、用法和适用场景,从而在实际开发中更加灵活地利用Java Stream API提升代码的效率和性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/46492.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[k8s源码]2.CURD deployment

加载kubernetes配置 使用 clientcmd方法&#xff0c;是通过"k8s.io/client-go/tools/clientcmd"包加载的。这个函数返回的是config和error两个值。可以看到返回的config是一个指针变量。 func clientcmd.BuildConfigFromFlags(masterUrl string, kubeconfigPath str…

sklearn基础教程:掌握机器学习入门的钥匙

sklearn基础教程&#xff1a;掌握机器学习入门的钥匙 在数据科学和机器学习的广阔领域中&#xff0c;scikit-learn&#xff08;简称sklearn&#xff09;无疑是最受欢迎且功能强大的库之一。它提供了简单而高效的数据挖掘和数据分析工具&#xff0c;让研究人员、数据科学家以及…

Nuxt.js 错误侦探:useError 组合函数

title: Nuxt.js 错误侦探&#xff1a;useError 组合函数 date: 2024/7/14 updated: 2024/7/14 author: cmdragon excerpt: 摘要&#xff1a;文章介绍Nuxt.js中的useError组合函数&#xff0c;用于统一处理客户端和服务器端的错误&#xff0c;提供statusCode、statusMessage和…

【C++】—— 初识C++

【C】—— 初识C 一、什么是 C二、C 的发展历史三、C 版本更新四、C 的重要性五、C 在工作领域中的运用六、C 书籍推荐&#xff1a; 一、什么是 C C语言 是结构化和模块化的语言&#xff0c;适合处理较小规模的程序。对于复杂的问题&#xff0c;规模较大的程序&#xff0c;需要…

k8s快速部署一个网站

1&#xff09;使用Deployment控制器部署镜像&#xff1a; kubectl create deployment web-demo --imagelizhenliang/web-demo:v1 kubectl get deployment,pods[rootk8s-matser ~]# kubectl get pods NAME READY STATUS RESTARTS A…

STM32 BootLoader 刷新项目 (四) 通信协议

STM32 BootLoader 刷新项目 (四) 通信协议 文章目录 STM32 BootLoader 刷新项目 (四) 通信协议1. 通信流程2. 支持指令3. 通信流程4. 指令结构5. 操作演示 前面几章节&#xff0c;我们已经介绍了BootLoader的整体程序框架&#xff0c;方案设计&#xff0c;以及STM32CubdeMX的配…

数据结构(4.0)——串的定义和基本操作

串的定义(逻辑结构) 串&#xff0c;即字符串(String)是由零个或多个字符组成的有序数列。 一般记为Sa1a2....an(n>0) 其中&#xff0c;S是串名&#xff0c;单引号括起来的字符序列是串的值;ai可以是字母、数字或其他字符&#xff1b;串中字符的个数n称为串的长度。n0时的…

常开常闭液位传感器怎么选

在选择常开常闭传感器时&#xff0c;关键是根据其工作原理和应用需求来进行合适的选择&#xff0c;以确保系统的正常运行和效率。常开和常闭传感器的设计在信号输出时有明显差异&#xff0c;因此在不同的控制系统中选择合适的类型至关重要。 常开传感器的特点是在没有检测到目…

Nginx的访问限制与访问控制

访问限制 访问限制是一种防止恶意访问的常用手段&#xff0c;可以指定同一IP地址在固定时间内的访问次数&#xff0c;或者指定同一IP地址在固定时间内建立连接的次数&#xff0c;若超过网站指定的次数访问将不成功。 请求频率限制配置 请求频率限制是限制客户端固定时间内发…

C#小结:未能找到类型或命名空间名“xxx”(是否缺少 using 指令或程序集引用?)

方案一&#xff1a;移除这些失效的引用&#xff0c;下载对应版本的dll&#xff0c;重新添加引用 方案二&#xff1a;项目右键属性-调整目标框架版本&#xff08;一般是降低版本&#xff09; 方案三&#xff1a;调整编译顺序&#xff1a; 项目A&#xff1a;引用1、引用2 &…

算法训练 | 图论Part8 | 117. 软件构建、47. 参加科学大会

目录 117. 软件构建 拓扑排序法 47. 参加科学大会 dijkstra法 117. 软件构建 题目链接&#xff1a;117. 软件构建 文章讲解&#xff1a;代码随想录 拓扑排序法 代码一&#xff1a;拓扑排序 #include <iostream> #include <vector> #include <queue> …

鸿蒙架构之AOP

零、主要内容 AOP 简介ArkTs AOP 实现原理 JS 原型链AOP实现原理 AOP的应用场景 统计类&#xff1a; 方法调用次数统计、方法时长统计防御式编程&#xff1a;参数校验代理模式实现 AOP的注意事项 一、AOP简介 对于Android、Java Web 开发者来说&#xff0c; AOP编程思想并不…

最值得推荐的10款Windows软件!

AI视频生成&#xff1a;小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频播放量破百万https://aitools.jurilu.com/1.音乐播放器——Dopamine Dopamine是一款音乐播放器&#xff0c;设计简洁美观。它支持多种音频格式&#xff0c;包括wav、mp3、ogg…

亚马逊IP关联是什么?要怎么解决呢?

亚马逊不仅提供了广泛的商品和服务&#xff0c;也是许多企业和个人选择的电子商务平台。然而&#xff0c;与亚马逊相关的IP关联问题&#xff0c;特别是在网络安全和运营管理方面&#xff0c;经常成为使用亚马逊服务的用户和商家关注的焦点。通过了解亚马逊IP关联的含义、可能的…

MMLab-dataset_analysis

数据分析工具 这里写目录标题 数据分析工具dataset_analysis.py数据可视化分析 benchmark.pybrowse_coco_json.pybrowse_dataset.pyOptimize_anchors mmyolo、mmsegmentation等提供了数据集分析工具 dataset_analysis.py 数据采用coco格式数据 根据配置文件分析全部数据类型或…

【python】pyinstaller编译后py脚本中的shell命令报错symbol lookup error

文章目录 问题描述解决办法总结 问题描述 有一个python脚本testa.py&#xff0c;脚本内部使用了shell命令&#xff0c;比如&#xff1a; # testa.py import subprocess subprocess.call("mkdir -p test123", shellTrue)直接使用pyinstaller进行编译 pyinstaller t…

从零开始学习嵌入式----C语言数组指针

目录 拨开迷雾&#xff1a;深入浅出C语言数组指针 一、 数组与指针&#xff1a;剪不断理还乱的关系 二、 数组指针&#xff1a;指向数组的指针 三、 数组指针的应用场景 四、 总结 拨开迷雾&#xff1a;深入浅出C语言数组指针 数组和指针&#xff0c;在C语言的世界里&…

玩转springboot之SpringApplicationRunListener

SpringApplicationRunListener 在看源码的时候经常看到 SpringApplicationRunListeners listeners getRunListeners(args); listeners.starting();这个SpringApplicationRunListeners是用来干嘛的呢 public interface SpringApplicationRunListener {/*** run方法首次启动的…

pico+unity手柄和摄像机控制初级设置

1、摄像头配置 摄像头模式、floor是追踪原点类型&#xff08;将根据设备检测到地面的高度来计算追踪原点&#xff09;&#xff0c; Device 模式时&#xff0c;为通常理解的 Eye 模式&#xff0c;不会将根据设备检测到地面的高度来计算追踪原点 选择floor时&#xff0c;修改相…

K8S ingress 初体验 - ingress-ngnix 的安装与使用

准备环境 先把 google 的vm 跑起来… gatemanMoreFine-S500:~/projects/coding/k8s-s/service-case/cloud-user$ kubectl get nodes NAME STATUS ROLES AGE VERSION k8s-master Ready control-plane,master 124d v1.23.6 k8s-no…