【提示学习论文】PMF:Efficient Multimodal Fusion via Interactive Prompting论文原理

Efficient Multimodal Fusion via Interactive Prompting(CVPR2023)

  • 基于交互式提示的高效多模态融合方法
  • 减少针对下游任务微调模型的计算成本
  • 提出模块化多模态融合架构,促进不同模态之间的相互交互
  • 将普通提示分为三种类型,仅在单模态transformer深层添加提示向量,显著减少训练内存的使用

1 Introduction

  • 提示微调方法采用顺序模块化结构,预训练图像transformer模型后接着语言transformer模型,因此跨模态学习的两个主要问题:单向路径学习和模型层数显著增加。
  • 减少了需要更新的参数数量,但没有减少训练期间的内存使用量

2 Related works

在这里插入图片描述
提出Prompt-base Multimodal Fusion method(PMF),具有高内存效率

  • 具有高灵活性,促进不同模态之间的双向交互,语言模型与图像模型以并行方式构建,不同模态的token可以通过类似交叉注意力的操作来学习相互交互
  • 使用三种类型的交互式提示(查询提示、查询上下文提示、融合上下文提示)来动态学习,查询提示和查询上下文提示可以看作一对问题和答案,提取两种模态之间交换所需的信息。融合上下文提示会为传递的答案提供上下文,以促进融合
  • 考虑到计算反向传播提示的梯度非常消耗内存,本文仅在单模态transformer的深层添加提示

3 Prompt-based Multimodal Fusion基于提示的多模态融合方法

PMF三部分:

  • 视觉和语言的单模态Transformer
  • 基本特征提取
  • 基于交互式提示,将两个单模态 Transformer 层集成为多模态 Transformer 层

3.1 单模态Transformer

图像和文本最终都会得到一个连续的嵌入序列,将特殊的标记CLS与其拼接,输入Transformer中。对于每个transformer层,输入经过包括多头自注意力、层归一化、多层感知器在内的模块,最后通过残差连接添加到原始输入中。
在这里插入图片描述

3.2 单模态基部特征提取

在这里插入图片描述
图像和文本输入首先分别被处理并输入到单模态transformer层中提取基本特征。在此阶段,每个编码器的工作方式与在单模态任务中的工作方式完全相同。
每个编码器的基本特征提取:
在这里插入图片描述

  • Lf:融合层起始层数,越小越早融合
  • Θ:预训练参数

3.3 多模态融合层-交互式提示

在这里插入图片描述
每个融合层由查询阶段、融合阶段组成,提取的单模态基本特征通过多个多模态融合层进行融合。

  • Querying查询阶段
    在这里插入图片描述
    输入序列为原图像序列z+查询上下文提示qcp+查询提示qp
    在这里插入图片描述
    输入translayer,得到输出
    在这里插入图片描述
    将查询提示qp进行非线性映射

  • Fusion融合阶段

在这里插入图片描述

输入原文本序列+融合上下文提示fcp+查询提示qp非线性映射后的yqp
在这里插入图片描述
输入经过FusionLayer,得到输出

4 Experiments

4.1 数据集

UPMC Food-101:包含101种食物的图像和文本描述
MM-IMDB:包含电影情节概要、电影海报、类型
SNLI-VE:多模态分类数据集

4.2 现有方法和baselines

  • 微调单模态模型:例如BERT和ViT,取ViT和BERT中最后一层的CLS标记的输出表示,并将其输入到一个线性分类器中进行分类。
  • VPT和P-BERT:每个变换器层的输入序列都与一个长度为10的提示向量连接起来。在训练过程中,仅更新连接的提示向量和最终线性分类器。
  • LateConcat和Linear:强基线方法,即将ViT和BERT的CLS标记的输出特征连接起来,然后将连接的特征输入到一个线性分类器中。
  • MMBT和MBT:作者重新实现了MMBT(Multimodal Multi-BERT)和MBT(Multimodal BERT)方法,使用vit-base模型作为视觉编码器和bert-base模型作为文本编码器,以进行公平和受控比较。
  • PromptFuse和BlindPrompt:在单模态预训练模型上利用提示进行多模态融合,提示的长度设置为20。

4.3 实现细节

  • 预训练的骨干网络和初始化:作者在所有实验中都使用了ImageNet-21k预训练的vit-base模型作为视觉编码器,以及bert-base-uncased模型作为语言编码器。所有预训练的检查点均来自于huggingface。所有提示向量都通过高斯分布进行初始化,均值为0,标准差为0.02。
  • 网络训练:作者在所有实验中使用了SGD优化器,动量设置为0.9,权重衰减设置为1e-4。对于SNLI-VE数据集,批量大小设置为64,对于UPMC Food-101和MM-IMDB数据集,批量大小设置为32。在所有实验中应用了交叉熵损失函数,并且对于UPMC Food-101和MM-IMDB数据集,类标签按其逆频率加权。更多细节可以在补充材料中找到。

4.4 结果

在这里插入图片描述
表2中,可以看到,PMF的可学习参数少,可节省高达66%的训练内存使用量

4.5 消融实验

4.5.1 提示和映射组件消融

在这里插入图片描述
验证三种提示和非线性映射函数的有效性,

  • 第一行是在PMF中没有任何组件的情况
  • 前三行是仅提示两个变换器的顶层,不能实现多模态融合,相反会干扰两个变换器的特征空间,最终影响性能。
  • 最后四行的比较表明,将提示解耦成三个具有不同学习目标的独立模块会带来性能提升。
  • 第五行和第六行的比较显示,扩展的QP无法取代QCP。因为只有QP标记的输出被融合到另一个模态,而QCP标记的输出被舍弃,用更长的QP代替QCP不仅增加了计算量,因为融合阶段的序列更长,而且还会导致性能下降。
  • PMF中引入的每个模块都对多模态融合的质量有所贡献。任何四个模块中的一个缺失都会导致不同程度的性能下降。

4.5.2 融合层数

在这里插入图片描述
图4,对不同融合层Lf对融合性能和内存效率带来的影响进行了调查。从图中可以看出,随着融合开始较晚,训练内存使用量不断减少。融合模型的性能在Lf ≤ 10时相对一致。因此,从经验上看,仅在深层(10 < l < L)上添加提示在性能和内存效率之间进行权衡是更好的选择。

4.5.3 提示长度

在这里插入图片描述

图5,对提示长度进行的消融研究,其中三种提示的长度设置为相同(即Mqp = Mqcp = Mfcp)

  • 当M ≤ 16时,性能随着提示长度的增加而增加
  • 但当提示过长时(M=32),性能下降。
  • 需要强调的是,随着提示长度从1增加到16,训练内存使用量仅增加了约1GB,这意味着训练内存使用量的主要因素是融合层Lf,而不是提示长度。

4.6 模块化和灵活性

在这里插入图片描述
PMF的高度模块化,当有更好的单模态变换器时替换它们是非常简单。由于每个单模态变换器的总变换器层数(Limg和Ltxt)现在不同,两个模态的单模态基础特征现在需要不同的层进行提取,而融合保留的剩余层数量保持不变。不同隐藏维度d之间的差异由非线性映射函数f自动处理。表4中的结果清楚地证明了PMF可以通过更大的单模态变换器得到增强,而训练内存使用量的增加非常有限。

4.7 PMF with NAS

  • 利用自动搜索算法(NAS)来优化PMF模型中的超参数。虽然PMF在没有进行详尽的超参数调优的情况下已经表现良好,但针对每个不同的任务和数据分布进行特定设置仍然是可取的。
  • 通过AutoFormer进行了自动融合结构的搜索。搜索空间和演化搜索的详细描述可以在补充材料中找到。表5展示了在三个数据集上应用NAS的PMF的性能。随着训练内存使用量的增加,PMF-NAS比具有相同视觉和语言编码器的常规PMF取得了更好的结果,大大减轻了找到优选融合结构的工作量。

5 Conclusion

结论:我们提出了一种新型的模块化多模态融合框架,展现了高度的灵活性,并促进了不同模态之间的双向交互,即PMF。PMF利用三种类型的交互式提示,以动态学习多模态学习的不同目标。通过仅在使用的单模态变换器的深层上添加提示,PMF可以显著减少反向传播中梯度计算的内存使用。通过广泛的实验证明,PMF具有相当高的内存效率,同时能够与现有的微调基线相媲美。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/4625.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

websocket 单点通信,广播通信

Websocket协议是对http的改进&#xff0c;可以实现client 与 server之间的双向通信&#xff1b; websocket连接一旦建立就始终保持&#xff0c;直到client或server 中断连接&#xff0c;弥补了http无法保持长连接的不足&#xff0c;方便了客户端应用与服务器之间实时通信。 参…

大数据005-hadoop003-了解MR及Java的简单实现

了解MapReduce MapReduce过程分为两个阶段&#xff1a;map阶段、reduce阶段。每个阶段搜键-值对作为输入和输出。 要执行一个MR任务&#xff0c;需要完成map、reduce函数的代码开发。 Hellow World 【Hadoop权威指南】中的以分析气象数据为例&#xff0c;找到每年的最高气温。…

Jenkins持续化集成

优质博文&#xff1a;IT-BLOG-CN 工作过程如下环境准备 开发人员提交代码>jenkins获取代码>调用单元测试>打包>发布 环境准备Jenkins的安装 Tomcat、Maven、Git或Svn、Jdk Jenkins的安装 1、官网下载war &#xff1a;http://Jenkins-ci.org/ 2、tomcat-users.…

NTFS文件权限管理

实验环境 windows server 2016 实验要求 实验步骤 1、 新建文件 2、打开文件夹的属性->安全->高级 3、禁用继承 4、添加组或用户 技术资料&#xff1a; 常用软件&#xff1a; 手机端项目&#xff1a; 电脑端项目&#xff1a; 公司制度&#xff1a; 销售资源&#xff…

【Scala---01】Scala『 Scala简介 | 函数式编程简介 | Scala VS Java | 安装与部署』

文章目录 1. Scala简介2. 函数式编程简介3. Scala VS Java4. 安装与部署 1. Scala简介 Scala是由于Spark的流行而兴起的。Scala是高级语言&#xff0c;Scala底层使用的是Java&#xff0c;可以看做是对Java的进一步封装&#xff0c;更加简洁&#xff0c;代码量是Java的一半。 因…

JAVA读取从WPS在Excel中嵌入的图片资源

读取从WPS在Excel中嵌入的图片资源 引言 许多数据文件中可能包含嵌入式图片&#xff0c;这些图片对于数据分析和可视化非常重要。然而&#xff0c;从 WPS 在 Excel 中读取这些图片可能会有一些技术挑战。在本文中&#xff0c;我将展示如何从 WPS Excel 文件中读取嵌入的图片&am…

海外三大AI图片生成器对比(Stable Diffusion、Midjourney、DALL·E 3)

Stable Diffusion DreamStudio 是Stable Diffusion 的官方网页&#xff0c;价格便宜&#xff0c;对图片的操作性强&#xff0c;但同时编辑页面不太直观&#xff0c;对使用者的要求较高。 与 DALLE 和 Midjourney 不同&#xff0c;Stable Diffusion 是开源的。这也意味着&…

linux tcpdump的交叉编译以及使用

一、源码下载 官网&#xff1a;点击跳转 二、编译 1、解压 tar -xf libpcap-1.10.4.tar.xz tar -xf tcpdump-4.99.4.tar.xz 2、配置及编译 //libpcap&#xff1a; ./configure --hostarm-linux --targetarm-linux CCarm-linux-gcc --with-pcaplinux --prefix$PWD/build//t…

企业如何保证内部传输文件使用的工具是安全的?

企业内部文件的频繁交换成为了日常运营不可或缺的一环。然而&#xff0c;随着数据量的爆炸式增长和网络攻击手段的日益复杂&#xff0c;内网文件传输的安全隐患也日益凸显&#xff0c;成为企业信息安全的薄弱环节。本文将探讨内网文件传输的安全风险、企业常用的防护措施。 内网…

Django之搭配内网穿透

一&#xff0c;安装coplar 二&#xff0c;开启8087的内网穿透 三&#xff0c;setting.py中加入如下配置&#xff1a; ALLOWED_HOSTS [*]CSRF_TRUSTED_ORIGINS ["https://localhost:8087", "http://localhost:8087"]四&#xff0c;启动项目 五&#xff…

STM32之HAL开发——ADC入门介绍

ADC简介 模数转换&#xff0c;即Analog-to-Digital Converter&#xff0c;常称ADC&#xff0c;是指将连续变量的模拟信号转换为离散的数字信号的器件&#xff0c;比如将模温度感器产生的电信号转为控制芯片能处理的数字信号0101&#xff0c;这样ADC就建立了模拟世界的传感器和…

第4篇:创建Nios II工程之Hello_World<三>

Q&#xff1a;接着我们再来完成Nios II软件工程设计部分。 A&#xff1a;从Quartus Tools选择Nios II Software Build Tools for Eclipse&#xff0c;打开Nios II SBT软件&#xff0c;Workspace指定到hello_world工程的software文件夹路径&#xff1b;再从File-->New-->…

Linux命令大全 以及搭建hadoop

Liunx系统目录 ├── bin -> usr/bin # 用于存放二进制命令 ├── boot # 内核及引导系统程序所在的目录 ├── dev # 所有设备文件的目录&#xff08;如磁盘、光驱等&#xff09; ├── etc # 配置文件默认路径、服务启动命令存放目录 ├── home # 用户家目录&#…

上位机图像处理和嵌入式模块部署(树莓派4b设置ftp下载)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 作为一个开发板&#xff0c;最好支持ftp下载&#xff0c;这样文件的上传和下载都会比较方便。虽然目前为止&#xff0c;利用mobaxterm和ssh也能实现…

ObjectARX特性面板OPM添加动态属性

参考资料 AutoCAD与动态属性PDF文档 https://www.progdomain.com/584/ObjectARX2016 OPM面板全攻略 https://blog.csdn.net/jfmyes/article/details/121392332 准备工作——正确安装ARX和Wizards ARX和VS的版本对应、ObjectArx(2010~2020)工程创建、类添加及错误处理 https:…

《从Paxos到Zookeeper》——第四、七章:基本概念及原理

目录 第四章 Zookeeper与Paxos 4.1 Zk是什么 4.1.1 Zk特性 4.1.2 Zk基本概念 4.1.2.1 集群角色(Follower, Leader, Observer) 4.1.2.2 数据模型 4.1.2.3 ZNode(数据节点) 4.1.2.4 Session(会话) 4.1.2.5 ACL&#xff08;Access Control Lists&#xff09; 4.1.2.6 Watcher(事件…

如何用OceanBase的 Load Data 导入CSV文件

0 前言 CSV文件&#xff08;Comma-Separated Values&#xff0c;字符分隔值&#xff09;是一种普遍采用的数据存储格式&#xff0c;有不少企业和机构都用它来进行数据的管理和存储。身为开发者&#xff0c;您可能经常遇到这样的需求&#xff1a;需要将CSV的数据导入OceanBase数…

OpenCV如何实现背投

返回:OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV直方图比较 下一篇 :OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 目标 在本教程中&#xff0c;您将学习&#xff1a; 什么是背投以及它为什么有用如何使用 Ope…

stm32单片机开发二、定时器-内部时钟中断和外部时钟中断、编码器

定时器本质就是一个计数器 案例&#xff1a;定时器定时中断 内部时钟中断 Timer_Init(); //定时中断初始化 /*** 函 数&#xff1a;定时中断初始化* 参 数&#xff1a;无* 返 回 值&#xff1a;无*/ void Timer_Init(void) {/*开启时钟*/RCC_APB1PeriphClockCmd(RCC…

纯血鸿蒙APP实战开发——Navigation实现多设备适配案例

介绍 在应用开发时&#xff0c;一个应用需要适配多终端的设备&#xff0c;使用Navigation的mode属性来实现一套代码&#xff0c;多终端适配。 效果图预览 使用说明 将程序运行在折叠屏手机或者平板上观看适配效果。 实现思路 本例涉及的关键特性和实现方案如下&#xff1a…