项目收获总结--本地缓存方案选型及使用缓存的坑

本地缓存方案选型及使用缓存的坑

        • 一、摘要
        • 二、本地缓存
        • 三、本地缓存实现方案
          • 3.1 自己编程实现一个缓存
          • 3.2 基于 Guava Cache 实现本地缓存
          • 3.3 基于 Caffeine 实现本地缓存
          • 3.4 基于 Encache 实现本地缓存
          • 3.5 小结
        • 四、使用缓存的坑
          • 4.1 缓存穿透
          • 4.2 缓存击穿
          • 4.3 缓存雪崩
          • 4.4 数据不一致
          • 4.5 大key问题
          • 4.6 热key问题
          • 4.7 命中率问题

一、摘要

在互联网公司面试时,说到缓存,面试官基本上会绕不开的几个话题:项目中哪些地方用到了缓存?为什么要使用缓存?怎么使用它的?引入缓存后会带来哪些问题?
在这里插入图片描述

引入缓存,其实主要有两个用途:高性能、高并发

性能体现在引入缓存之前,以商城网站为例,频繁的从数据库里面获取商品数据,也就需要频繁执行SQL等待结果,若数据量很大同时请求频次逐渐增高,响应就逐渐缓慢;引入缓存之后,将数据库里面查询出来的商品数据信息存入缓存,需要时直接从缓存服务获取结果,效率极大提升。

并发体现在引入缓存之前,以 MySQL数据库为例,单台机器一秒内的请求次数到达 2000 之后就会开始报警;引入缓存之后,比如以 Redis 缓存服务器为例,单台机器一秒内的请求次数支持 110000 次,两者支持的并发量完全不是一个数量级的。

缓存和数据库效率差距大的根本原因:缓存数据存储在内存,数据库数据存储在磁盘,
而计算机中内存的数据读写性能远超磁盘的读写性能。但电脑重启后内存数据易丢失,而磁盘数据不易丢失。

所以数据存储方案不同,造就不同的实践用途。接下来就浅谈缓存,主要是本地缓存的使用。

二、本地缓存

从缓存面向的对象不同,缓存分为:本地缓存分布式缓存和多级缓存
(1)本地缓存:在单个计算机服务实例中,直接把数据缓存到内存中进行使用。
(2)分布式缓存:将一个计算机服务,同时在多台计算机里部署,所需数据无法共享(比如session会话)而引入一个独立部署的缓存服务来连接多台服务器的技术实践方案。
(3)多级缓存:在实际的业务中,本地缓存和分布式缓存会同时结合进行使用,当收到访问某个数据的操作时,会优先从本地缓存服务(一级缓存)查询,如果没有,再从分布式缓存服务(二级缓存)里面获取,如果也没有,最后再从数据库里面获取;从数据库查询完成之后,在依次更新分布式缓存服务、本地缓存服务的技术实践方案。

三、本地缓存实现方案

缓存关注点:第一是内存持久化;第二是支持缓存的数据自动过期清除。

3.1 自己编程实现一个缓存

对于简单的数据缓存,完全可以自行编写一套缓存服务。实现思路很简单:采用ConcurrentHashMap作为缓存数据存储服务,然后开启一个定时调度,每隔500毫秒检查一下过期的缓存数据,然后清除。
首先创建一个缓存实体类:

public class CacheEntity {/*** 缓存键*/private String key;/*** 缓存值*/private Object value;/*** 过期时间*/private Long expireTime;//...set、get
}

接着,创建一个缓存操作工具类CacheUtils:

public class CacheUtils {/*** 缓存数据*/private final static Map<String, CacheEntity> CACHE_MAP = new ConcurrentHashMap<>();/*** 定时器线程池,用于清除过期缓存*/private static ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();static {// 注册一个定时线程任务,服务启动1秒之后,每隔500毫秒执行一次executor.scheduleAtFixedRate(new Runnable() {@Overridepublic void run() {// 清理过期缓存clearCache();}},1000,500,TimeUnit.MILLISECONDS);}/*** 添加缓存* @param key    缓存键* @param value  缓存值*/public static void put(String key, Object value){put(key, value, 0);}/*** 添加缓存* @param key    缓存键* @param value  缓存值* @param expire 缓存时间,单位秒*/public static void put(String key, Object value, long expire){CacheEntity cacheEntity = new CacheEntity().setKey(key).setValue(value);if(expire > 0){Long expireTime = System.currentTimeMillis() + Duration.ofSeconds(expire).toMillis();cacheEntity.setExpireTime(expireTime);}CACHE_MAP.put(key, cacheEntity);}/*** 获取缓存* @param key* @return*/public static Object get(String key){if(CACHE_MAP.containsKey(key)){return CACHE_MAP.get(key).getValue();}return null;}/*** 移除缓存* @param key*/public static void remove(String key){if(CACHE_MAP.containsKey(key)){CACHE_MAP.remove(key);}}/*** 清理过期的缓存数据*/private static void clearCache(){if(CACHE_MAP.size() > 0){return;}Iterator<Map.Entry<String, CacheEntity>> iterator = CACHE_MAP.entrySet().iterator();while (iterator.hasNext()){Map.Entry<String, CacheEntity> entry = iterator.next();if(entry.getValue().getExpireTime() != null && entry.getValue().getExpireTime().longValue() > System.currentTimeMillis()){iterator.remove();}}}
}

最后,创建测试main方法:

/ 写入缓存数据,过期时间为3CacheUtils.put("userName", "张三", 3);// 读取缓存数据
Object value1 = CacheUtils.get("userName");
System.out.println("第一次查询结果:" + value1);// 停顿4秒
Thread.sleep(4000);// 读取缓存数据
Object value2 = CacheUtils.get("userName");
System.out.println("第二次查询结果:" + value2);

结果:

第一次查询结果:张三
第二次查询结果:null
3.2 基于 Guava Cache 实现本地缓存

Guava 是 Google 团队开源的一款 Java 核心增强库,包含集合、并发原语、缓存、IO、反射等工具箱,性能和稳定性上都有保障,应用十分广泛。而Guava Cache 很强大,支持很多特性如下:

支持最大容量限制
支持两种过期删除策略(插入时间和读取时间)
支持简单的统计功能
基于 LRU 算法实现

首先pom.xml引入guava依赖:

<!--guava-->
<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>31.1-jre</version>
</dependency>

使用:

// 创建一个缓存实例
Cache<String, String> cache = CacheBuilder.newBuilder()// 初始容量.initialCapacity(5)// 最大缓存数,超出淘汰.maximumSize(10)// 过期时间.expireAfterWrite(3, TimeUnit.SECONDS).build();// 写入缓存数据
cache.put("userName", "张三");// 读取缓存数据
String value1 = cache.get("userName", () -> {// 如果key不存在,会执行回调方法return "key已过期";
});
System.out.println("第一次查询结果:" + value1);// 停顿4秒
Thread.sleep(4000);// 读取缓存数据
String value2 = cache.get("userName", () -> {// 如果key不存在,会执行回调方法return "key已过期";
});
System.out.println("第二次查询结果:" + value2);

输出结果:

第一次查询结果:张三
第二次查询结果:key已过期
3.3 基于 Caffeine 实现本地缓存

Caffeine 是基于 java8 实现的新一代缓存工具,缓存性能接近理论最优,可以看作是 Guava Cache 的增强版,功能上两者类似,不同的是 Caffeine 采用了一种结合 LRU、LFU 优点的算法:W-TinyLFU,在性能上有明显的优越性。
首先pom.xml引入caffeine依赖:

<!--caffeine-->
<dependency><groupId>com.github.ben-manes.caffeine</groupId><artifactId>caffeine</artifactId><version>2.9.3</version>
</dependency>

使用:

// 创建一个缓存实例
Cache<String, String> cache = Caffeine.newBuilder()// 初始容量.initialCapacity(5)// 最大缓存数,超出淘汰.maximumSize(10)// 设置缓存写入间隔多久过期.expireAfterWrite(3, TimeUnit.SECONDS)// 设置缓存最后访问后间隔多久淘汰,实际很少用到//.expireAfterAccess(3, TimeUnit.SECONDS).build();// 写入缓存数据
cache.put("userName", "张三");// 读取缓存数据
String value1 = cache.get("userName", (key) -> {// 如果key不存在,会执行回调方法return "key已过期";
});
System.out.println("第一次查询结果:" + value1);// 停顿4秒
Thread.sleep(4000);// 读取缓存数据
String value2 = cache.get("userName", (key) -> {// 如果key不存在,会执行回调方法return "key已过期";
});
System.out.println("第二次查询结果:" + value2);

输出结果:

第一次查询结果:张三
第二次查询结果:key已过期
3.4 基于 Encache 实现本地缓存

Encache 是一个纯 Java 的进程内缓存框架,具有快速、精干等特点,是 Hibernate 中默认的 CacheProvider。

同 Caffeine 和 Guava Cache 相比,Encache 的功能更加丰富,扩展性更强,特性如下:

支持多种缓存淘汰算法,包括 LRULFUFIFO
缓存支持堆内存储、堆外存储、磁盘存储(支持持久化)三种
支持多种集群方案,解决数据共享问题

首先pom.xml引入ehcache依赖:

<!--ehcache-->
<dependency><groupId>org.ehcache</groupId><artifactId>ehcache</artifactId><version>3.9.7</version>
</dependency>

使用:

/*** 自定义过期策略实现*/
public  class CustomExpiryPolicy<K, V> implements ExpiryPolicy<K, V> {private final Map<K, Duration> keyExpireMap = new ConcurrentHashMap();public Duration setExpire(K key, Duration duration) {return keyExpireMap.put(key, duration);}public Duration getExpireByKey(K key) {return Optional.ofNullable(keyExpireMap.get(key)).orElse(null);}public Duration removeExpire(K key) {return keyExpireMap.remove(key);}@Overridepublic Duration getExpiryForCreation(K key, V value) {return Optional.ofNullable(getExpireByKey(key)).orElse(Duration.ofNanos(Long.MAX_VALUE));}@Overridepublic Duration getExpiryForAccess(K key, Supplier<? extends V> value) {return getExpireByKey(key);}@Overridepublic Duration getExpiryForUpdate(K key, Supplier<? extends V> oldValue, V newValue) {return getExpireByKey(key);}
}
public static void main(String[] args) throws InterruptedException {String userCache = "userCache";// 自定义过期策略CustomExpiryPolicy<Object, Object> customExpiryPolicy = new CustomExpiryPolicy<>();// 声明一个容量为20的堆内缓存配置CacheConfigurationBuilder configurationBuilder = CacheConfigurationBuilder.newCacheConfigurationBuilder(String.class, String.class, ResourcePoolsBuilder.heap(20)).withExpiry(customExpiryPolicy);// 初始化一个缓存管理器CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()// 创建cache实例.withCache(userCache, configurationBuilder).build(true);// 获取cache实例Cache<String, String> cache = cacheManager.getCache(userCache, String.class, String.class);// 获取过期策略CustomExpiryPolicy expiryPolicy = (CustomExpiryPolicy)cache.getRuntimeConfiguration().getExpiryPolicy();// 写入缓存数据cache.put("userName", "张三");// 设置3秒过期expiryPolicy.setExpire("userName", Duration.ofSeconds(3));// 读取缓存数据String value1 = cache.get("userName");System.out.println("第一次查询结果:" + value1);// 停顿4秒Thread.sleep(4000);// 读取缓存数据String value2 = cache.get("userName");System.out.println("第二次查询结果:" + value2);
}

输出结果:

第一次查询结果:张三
第二次查询结果:null
3.5 小结

在这里插入图片描述
对于本地缓存的技术选型,推荐采用 Caffeine,性能上遥遥领先。功能与Guava 类似,而Encache虽支持持久化和集群,但不如分布式缓存中间件Redis。

四、使用缓存的坑

在项目中经常会使用缓存,但用不好的话坑也挺多的:
在这里插入图片描述

4.1 缓存穿透

用户请求的id在缓存中不存在恶意用户伪造不存在的id发起请求,每次从缓存中都查不到数据,而需要查询数据库,同时数据库中也没有查到该数据,也没法放入缓存。也就是每次这个用户请求过来的时候,都要查询一次数据库。
很显然,缓存根本没起作用,好像被穿透一样,每次都会去访问数据库,而直接请求数据库数量非常多,数据库可能因为扛不住压力而崩溃。
解决方案: 缓存空值
当某个用户id在缓存中查不到,在数据库中也查不到时,也要将该用户id缓存起来,只不过值是空的。这样后面的请求,再拿相同的用户id发起请求时,就能从缓存中获取空数据,直接返回而无需再去查数据库。
比如redis:

redisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
4.2 缓存击穿

在访问热点数据时,该热点在缓存中过期失效,导致这些大量请求短时间都直接怼到数据库,可能会造成瞬间数据库压力过大,而直接挂掉。
解决方案:
(1)加锁。在访问数据库时加锁,防止多个相同keyId的请求同时访问数据库。

try {String result = jedis.set(keyId, requestId, "NX", "PX", expireTime);if ("OK".equals(result)) {return queryInfoById(keyId);}
} finally{unlock(keyId,requestId);
}  
return null;

(2)自动续期
在key快要过期之前,用job给指定key自动续期。比如redis使用lua脚本。
(3)永久有效
对于很多热门key,其实是可以不用设置过期时间,让其永久有效的。

4.3 缓存雪崩

而缓存雪崩是缓存击穿的升级版,缓存击穿说的是某一个热门key失效了,而缓存雪崩说的是有多个热门key同时失效。
缓存雪崩目前有两种:

1)有大量的热门缓存,同时失效。会导致大量的请求,访问数据库。而数据库很有可能因为扛不住压力,而直接挂掉。
(2)缓存服务器down机,可能是机器硬件问题,或者机房网络问题。总之,造成了整个缓存的不可用。

解决方案:
(1) 过期时间加随机数,不要设置相同的过期时间,可以在设置的过期时间基础上,再加个1~60秒的随机数。

实际过期时间 = 过期时间 + 1~60秒的随机数

(2)保证高可用
比如:如果使用了redis,可以使用哨兵模式,或者集群模式,避免出现单节点故障导致整个redis服务不可用的情况。

(3)服务降级
需要配置一些默认的兜底数据。程序中有个全局开关,比如有10个请求在最近一分钟内,从redis中获取数据失败,则全局开关打开。后面的新请求,就直接从配置中心中获取默认的数据。

4.4 数据不一致

数据库和缓存(比如:redis)双写数据一致性问题,是一个跟开发语言无关的公共问题。尤其高并发场景这个问题尤为严重。
解决方案
先写数据库,再删缓存!
先写数据库,再删缓存!
先写数据库,再删缓存!
除非同时满足:

缓存刚好自动失效。
读请求从数据库查出旧值,更新缓存的耗时,比写请求写数据库,并且删除缓存的还长。

才会出现数据不一致,但系统同时满足上述两个条件的概率非常小。

4.5 大key问题

在使用缓存的时候,特别是Redis,经常会遇到大key问题(缓存中单个key的value值过大)。
项目经历:

在一个风控项目中曾开发过一个分类树查询接口,系统刚上线时,数据量少,在Redis中定义的key比较小,
我在做系统设计时,也没考虑到这个问题。系统运行很长一段时间也没有问题。但随着时间的推移,用户的数据越来越多,
用户的购买行为分类树也越来越大,慢慢形成大key问题。后来某一天之后发现,线上查询客户画像接口耗时越来越长,
追查原因,发现单个用户分类数据涨到上万个,导致该接口出现性能问题,追查发现分类树json串已经接近16MB,而引发大key问题导致的。

解决方案:
(1)缩减字段名
优化在Redis中存储数据的大小,首先需要对数据进行瘦身。只保存需要用到的字段:

@AllArgsConstructor
@Data
public class Category {private Long id;private String name;private Long parentId;private Date inDate;private Long inUserId;private String inUserName;private List<Category> children;
}

这个分类对象中inDate、inUserId和inUserName字段是可以不用保存的。
然后,修改自动名称:

@AllArgsConstructor
@Data
public class Category {/*** 分类编号*/@JsonProperty("i")private Long id;/*** 分类层级*/@JsonProperty("l")private Integer level;/*** 分类名称*/@JsonProperty("n")private String name;/*** 父分类编号*/@JsonProperty("p")private Long parentId;/*** 子分类列表*/@JsonProperty("c")private List<Category> children;
}

由于在一万多条数据中,每条数据的字段名称是固定的,他们的重复率太高,由此,可以在json序列化时,改成一个简短的名称,以便于返回更少的数据大小。

(2)压缩数据
由于在Redis中保存的key/value,其中的value我是存储json格式的字符串,但是占用内存很大,所以需要对存储的数据做压缩。

由于RedisTemplate支持,value保存byte数组,因此先将json字符串数据用GZip工具类压缩成byte数组,然后保存到Redis中。

在获取数据时,将byte数组转换成json字符串,然后再转换成分类树。

这样优化之后,保存到Redis中的分类树的数据大小减少10倍,从而解决大key问题。

4.6 热key问题

二八原理描述:80%的用户经常访问20%的热点数据。引发数据倾斜,不能均匀分布,尤其是高并发系统中问题比较大。

比如有个促销系统,有几款商品性价比非常高,这些商品数据在Redis中按分片保存的,不同的数据保存在不同的服务器节点上。
如果用户疯狂抢购其中3款商品,而这3款商品正好保存在同一台Redis服务端节点。
这样会出现大量的用户请求集中访问同一天Redis服务器节点,该节点很有可能会因为扛不住这么大的压力,而直接down机。

解决方案:
(1)拆分key:提前做好评估,将热点数据分开存储在不同redis服务器来分摊压力。
(2)增加本地缓存:对于热key数据,可以增加一层本地缓存(见前文),能够提升性能的同时也能避免Redis访问量过大的问题。但可能会出现数据不一致问题。

4.7 命中率问题

前面的情况都影响缓存的命中率问题,因为可能会出现缓存不存在,或者缓存过期等问题,导致缓存不能命中。
解决方案:
(1)缓存预热
在API服务启动之前,可以先用job,将相关数据先保存到缓存中,做预热。
这样后面的请求,就能直接从缓存中获取数据,而无需访问数据库。
(2)合理调整过期时间
(3)增加缓存内存

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/45858.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何管理好【管理层】?

如何管理好管理层? 现在流行“找客户痛点,不如找领导G点” 管理好管理层比管理好员工更重要,不要让管理层成为传话筒。你是抱着很大期望提供优厚的待遇聘用管理层,对于所有人来说,你需要一个这样的职位,对于他需要一分工作而已。出色的管理层就像出色的员工一样非常难寻…

leetcode日记(38)字母异位词分组

最开始的想法是创建vector<vector<string>> result&#xff0c;然后遍历strs中字符串&#xff0c;遍历result中vector&#xff0c;比较vector中第一个string和strs中string&#xff0c;若为字母异位词&#xff0c;则加入vector&#xff0c;若无&#xff0c;则创建新…

新手-前端生态

文章目录 新手的前端生态一、概念的理解1、脚手架2、组件 二、基础知识1、HTML2、css3、JavaScript 三、主流框架vue3框架 四、 工具&#xff08;特定框架&#xff09;1、uinapp 五、组件库&#xff08;&#xff09;1、uView如何在哪项目中导入uView 六、应用&#xff08;各种应…

Vulnhub靶场 | DC系列 - DC2

目录 环境搭建渗透测试 环境搭建 靶机镜像下载地址&#xff1a;https://vulnhub.com/entry/dc-2,311/需要将靶机和 kali 攻击机放在同一个局域网里&#xff1b;本实验kali 的 IP 地址&#xff1a;192.168.10.146。 渗透测试 使用 nmap 扫描 192.168.10.0/24 网段存活主机 …

2024年辽宁省数学建模竞赛C题超详细解题思路+问题一案代码分享

本文将为大家带来2024年C题超详细解题思路&#xff0c;本次竞赛6000人参加&#xff0c;共计2400队伍。C题作为本次竞赛中最简单的一道题目&#xff0c;意味着选题人数也将是最多的。因此&#xff0c;本文将对C题的解题思路以及将要面对的问题&#xff0c;进行详细的说明。希望我…

基于深度学习的组织病理学图像IDC检测方法

乳腺癌可以通过对浸润性导管性乳腺癌(IDC)和浸润性小叶性乳腺癌(ILC)的内部组织区域进行检查来确诊。因此&#xff0c;早期诊断乳腺组织异常是至关重要的&#xff0c;以减少风险&#xff0c;使快速和有效的治疗。本研究旨在利用所提出的基于深度学习的算法&#xff0c;利用组织…

本地部署 EVE: Unveiling Encoder-Free Vision-Language Models

本地部署 EVE: Unveiling Encoder-Free Vision-Language Models 0. 引言1. 快速开始2. 运行 Demo 0. 引言 EVE (Encoder-free Vision-language model) 是一种创新的多模态 AI 模型&#xff0c;主要特点是去除了传统视觉语言模型中的视觉编码器。 核心创新 架构创新&#xff…

C++的deque(双端队列),priority_queue(优先级队列)

deque deque是一个容器,是双端队列,从功能上来讲,deque是一个vector和list的结合体 顺序表和链表 deque的结构和优缺点 开辟buff小数组,空间不够了,不扩容,而是开辟一个新的小数组 开辟中控数组(指针数组)指向buff小数组 将已存在的数组指针存在中控数组中间,可以使用下标访…

MICS2024|数字病理与人工智能在乳腺癌精准诊疗中的应用

小罗碎碎念 这两天在厦大开会&#xff0c;医学图像相关的学术会议。来之前一直在我自己的交流群里宣传这个会议&#xff0c;因为自己的推文与病理相关的比较多&#xff0c;所以群里的同行也比较关注这个会议病理相关的内容。 讲者简介 Scopus主页&#xff1a;https://www.scop…

旋转电连接器抗干扰性有哪几个方面?

旋转电连接器作为一种精密的电气传输装置&#xff0c;它实现了两个相对旋转部件间的功率和信号传输。通过旋转电连接器可以传输高频的交流电、高电压的交流电、大电流的交流电、弱小的直流小信号等多种电信号&#xff0c;但是由仪器之间的距离有限&#xff0c;在如此短的距离内…

蓝桥杯算法周赛开赛啦

提醒&#xff1a;19:00算法双周赛准时开启&#xff01; 单题“一血”可获得云课定制便携风扇&#xff01; &#x1f9e7;入榜最高200元&#xff01;还可抽20&#xff5e;100元现金 &#x1fad8;每月参加2次算法双周赛&#xff0c;额外发放88个实验豆&#xff01; 参赛链接…

C++:类和对象 I(访问限定符、this指针)

目录 类的定义 类的大小 访问限定符 实例化 this指针 类的定义 class就是类&#xff0c;class是C中的一个关键字 当然类也可以是C语言中的struct&#xff0c;C兼容struct&#xff0c;甚至还有一些升级 定义类的方式 class Date {}; 和C语言的struct一样&#xff0c;c…

企业国产操作系统选型适配实施方案

【摘要】企业在推动国产化进程时&#xff0c;需选择一款主流、稳定且安全的服务器操作系统作为其系统软件。在产品投入实际生产环境前&#xff0c;对上游软硬件的适配情况有深入了解至关重要。本文将重点介绍银河麒麟高级服务器操作系统V10&#xff08;以下简称麒麟V10&#xf…

昇思25天学习打卡营第14天|K近邻算法实现红酒聚类

红酒Wine数据集 类别(13类属性)&#xff1a;Alcohol&#xff0c;酒精&#xff1b;Malic acid&#xff0c;苹果酸 Ash&#xff0c;灰&#xff1b;Alcalinity of ash&#xff0c;灰的碱度&#xff1b; Magnesium&#xff0c;镁&#xff1b;Total phenols&#xff0c;总酚&#xf…

算法可以赋能教育业务的哪些场景?

本文内容就一个点&#xff0c;将算法应用到教育系统中的各场景&#xff0c;让每个业务模块都实现智能化 以下列举出所有的需求点 目录 一、千人千面&#xff0c;个性化推荐流&#xff0c;推荐用户感兴趣的内容 实现方案&#xff1a;CTR模型 应用场景&#xff1a;所有的内容…

Perl语言之数组

Perl数组可以存储多个标量&#xff0c;并且标量数据类型可以不同。   数组变量以开头。访问与定义格式如下&#xff1a; #! /usr/bin/perl arr("asdfasd",2,23.56,a); print "输出所有:arr\n"; print "arr[0]$arr[0]\n"; #输出指定下标 print…

NLP任务:情感分析、看图说话

我可不向其他博主那样拖泥带水&#xff0c;我有代码就直接贴在文章里&#xff0c;或者放到gitee供你们参考下载&#xff0c;虽然写的不咋滴&#xff0c;废话少说&#xff0c;上代码。 gitee码云地址&#xff1a; 卢东艺/pytorch_cv_nlp - 码云 - 开源中国 (gitee.com)https:/…

初始c语言 语句

一 认识语句 控制流语句 if-else语句&#xff1a;用于条件判断。for循环语句&#xff1a;用于循环执行一段代码。while循环语句&#xff1a;当条件为真时执行循环。do-while循环语句&#xff1a;先执行一次循环体&#xff0c;然后再判断条件。switch语句&#xff1a;根据不同的…

CEPH 硬盘读写慢问题影响

ceph使用时经常会碰到起不来的情况 第一种就是服务器负载高&#xff0c;这个基本都会觉察到 还有一种就是硬盘问题 硬盘写问题 初始化时ceph会自己进行填充操作 ceph-volume lvm zap /dev/sdx --destroy 我就碰到过没初始化问题 看着一切正常 但看写入速度才几百KB/s 正常都100…

ArrayList模拟实现

ArrayList模拟实现 ArrayList 的初步介绍常见操作 ArrayList 的简单模拟实现 ArrayList 的初步介绍 ArrayList也叫做顺序表&#xff0c;底层是一个数组。 在创建顺序表 时就应该规定 里面元素的数据类型&#xff0c;其中不能直接传基本数据类型&#xff0c;例如int、char。需要…