阿里通义音频生成大模型 FunAudioLLM 开源!

01

导读

人类对自身的研究和模仿由来已久,在我国2000多年前的《列子·汤问》里就描述了有能工巧匠制作出会说话会舞动的类人机器人的故事。声音包含丰富的个体特征及情感情绪信息,对话作为人类最常使用亲切自然的交互模式,是连接人与智能世界至关重要的环节。

近日,阿里通义实验室发布并开源了语音大模型项目FunAudioLLM,旨在深化人类与大型语言模型(LLMs)之间的自然语音交互体验。这一框架的核心是两个创新模型:SenseVoice和CosyVoice。

图片

CosyVoice 致力于自然语音生成,支持多语言、音色和情感控制,在多语言语音生成、零样本语音生成、跨语言声音合成和指令执行能力方面表现卓越。

  • 多语言合成:采用了总共超15万小时的数据训练,支持中英日粤韩5种语言的合成,合成效果显著优于传统语音合成模型。

  • 极速音色模拟:仅需要3~10s的原始音频,即可生成模拟音色,甚至包括韵律、情感等细节。在跨语种的语音合成中,也有不俗的表现。

  • 富文本或自然语言的细粒度控制:支持以富文本或自然语言的形式,对合成语音的情感、韵律进行细粒度的控制,合成音频在情感表现力上得到明显提升。

SenseVoice 则专注于高精度多语言语音识别、情感辨识和音频事件检测。

  • 多语言识别:采用超过40万小时数据训练,支持超过50种语言,识别效果上优于Whisper模型,中文与粤语上提升50%以上。

  • 富文本识别:

  • 具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。

  • 支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。

  • 推理速度:SenseVoice-Small模型采用非自回归端到端框架,推理延迟极低,10s音频推理仅耗时70ms,15倍优于Whisper-large。

02

应用场景

基于SenseVoice和CosyVoice模型,FunAudioLLM可支持较多的人机交互应用场景,例如音色情感生成的多语言语音翻译、情绪语音对话、互动播客、有声读物等。

同音交传:模拟音色与情感的多语言翻译

图片

通过结合SenseVoice、LLMs以及CosyVoice,我们可以无缝地进行语音到语音的翻译(S2ST)。需要注意的是,原始录音在文本中会以粗体显示。这种集成化的方法不仅提升了翻译的效率和流畅性,而且通过感知语音中的情感和语调,它能够在译文中复现原始语音的情感色彩,让对话的交流更加真实和动人。

无论是多语种的会议通译、跨文化的交流沟通,还是为非母语者提供即时语音翻译服务,这一技术都将大大缩小语言差距和沟通中的信息减损。

强情感交互的语音对话

图片

通过融合SenseVoice、大型语言模型(LLMs)和CosyVoice,能够支持开发一款情感语音聊天应用程序。

当SenseVoice解析出情绪/情感/咳嗽等副语言信息后,大模型输出相对应的反馈情绪,并由CosyVoice合成出适当的声音情绪,从而完成舒适自然的对话交互过程。在以下示例中,用户和助手的所有对话内容均由CosyVoice合成。

图片

专属AI博客电台

图片

通过将SenseVoice、基于LLM的具有实时世界知识的多代理系统和CosyVoice整合,我们能够创造一个互动式播客电台。

在这样的播客中,SenseVoice利用其高精度多语言语音识别功能,实时捕捉AI播客和用户的对话,甚至能够辨识环境音效和情感。LLM多代理系统则能够处理SenseVoice提供的语音数据,实时更新世界知识库,确保话题和信息的及时性和准确性。

在交互中,用户可以随时打断AI播客的对话,引导主题方向等,CosyVoice将用于生成AI播客的语音,具备多种语言、音色和情感的控制能力,为听众带来丰富多彩的听觉体验。

图片

有声读物

图片

借助LLMs出色的分析能力,可对书籍内容进行结构化并识别其中的情感,再与CosyVoice的语音合成技术结合,我们能够实现具有更高表现力的有声读物。

LLMs深入理解文本,捕捉每一个情感波动和故事弧线,而CosyVoice则将这些情感细腻地转化为语音,带有特定的情绪色彩和强调,为听众提供一个不仅丰富多彩而且情感充沛的听觉体验。

这样的有声读物不再是单一无变化的朗读,而是一场充满情感与生动表达的听觉盛宴,让每个故事和角色都栩栩如生。

图片

03

技术原理解析

CosyVoice

CosyVoice是一款基于语音量化编码的语音生成大模型。它对语音进行离散化编码,并依托大模型技术,实现自然流畅的语音合成体验。与传统语音合成技术相比,CosyVoice具有韵律自然、音色逼真等特点。CosyVoice支持多达5种语言,同时还支持以自然语言或富文本形式对合成语音进行情感等维度的细粒度控制。我们提供了基模型CosyVoice-300M、经过SFT微调后的模型CosyVoice-300M-SFT、以及支持细粒度控制的模型CosyVoice-300M-Instruct,可满足不同场景下的使用需求。

图片

研究团队还使用预训练的情感分类模型评价了CosyVoice的情感控制能力,主要包括高兴/悲伤/生气/害怕/反感等5种高表现力的语音情感。CosyVoice-300M本身具备一定从文本内容中推断情感的能力,经过细粒度控制训练的模型CosyVoice-300M-Instruct在情感分类中的得分更高,具备更强的情感控制能力。

SenseVoice

SenseVoice是一个基础语音理解模型,具备多种语音理解能力,涵盖了自动语音识别(ASR)、语言识别(LID)、情感识别(SER)以及音频事件检测(AED)。该模型旨在提供全面的语音处理功能,从而支持构建更复杂的语音交互系统。

SenseVoice-Small 是一款仅含编码器的轻量级基础语音模型,设计用于快速语音理解。它可以快速处理语音数据,并在有需要时迅速做出响应,适用于对延迟敏感的应用场合,如实时语音交互系统。SenseVoice-Large 则是一个包含编码器和解码器的大型基础语音模型。这个版本的SenseVoice专注于更精确的语音理解,拥有对更多语言的支持能力。它适合于对识别精度有更高要求的场景,可以处理更复杂的语音输入,并生成更为准确的结果。

图片

SenseVoice-Small与SenseVoice-Large模型都能在语音中检测音频事件,包括音乐、掌声和笑声。SenseVoice-Large模型除了能够预测音频事件的类型,还能精准识别事件发生的起始和结束位置。与之相比,SenseVoice-Small模型虽然仅能预测音频中发生的事件类型(仅限于一个事件),但它能够检测到更多种类的事件,诸如在人机互动过程中可能出现的咳嗽、打喷嚏、呼吸和哭泣等。

04

魔搭社区体验

CosyVoice和SenseVoice相关的模型已在ModelScope上开源,同时在GitHub上发布了相应的训练、推理和微调代码,欢迎大家体验!

CosyVoice

  • **开源仓库:**https://github.com/FunAudioLLM/CosyVoice

  • 模型地址:

  • **CosyVoice-300M:**https://www.modelscope.cn/models/speech_tts/CosyVoice-300M

  • **CosyVoice-300M-SFT:**https://www.modelscope.cn/models/speech_tts/CosyVoice-300M-SFT

  • **CosyVoice-300M-Instruct:**https://www.modelscope.cn/models/speech_tts/CosyVoice-300M-Instruct

  • **在线体验:**https://www.modelscope.cn/studios/iic/CosyVoice-300M

选择【预置语音生成】

选择预制的几个不同性别/语种的音色,输入文本合成试听效果(可尝试输入[laughter],触发彩蛋~)

图片

效果试听:

选择【定制语音生成】

直接录一句话,即可用自己的音色输出更多合成文本,支持下载~

图片

一句话录音:

定制生成效果试听:

选择【高级语音生成(支持自然语言控制)】

在【预置语音生成】功能的基础上,可通过自定义情绪、语速等修饰,让合成文本的情景感更可控、生动。

图片

效果试听:

SenseVoice

  • **开源仓库:**https://github.com/FunAudioLLM/SenseVoice

  • **模型地址:**https://www.modelscope.cn/models/iic/SenseVoiceSmall

  • **在线体验:**https://www.modelscope.cn/studios/iic/SenseVoice

  • 小程序体验:

图片

<一起在线体验>

上传音频文件或通过麦克风输入,选择任务和语言

音频将被转录成相应的文本,并附带相关情感(😊 高兴,😡 生气/激动,😔 悲伤) 和 声音事件类型(😀 笑声,🎼 音乐,👏 掌声,🤧 咳嗽&打喷嚏,😭 哭泣)

让我们来试试同一句话的两个不同情绪的识别效果:

图片

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/42148.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp报错--app.json: 在项目根目录未找到 app.json

【问题】 刚创建好的uni-app项目&#xff0c;运行微信小程序控制台报错如下&#xff1a; 【解决方案】 1. 程序根目录打开project.config.json文件 2. 配置miniprogramRoot&#xff0c;指定小程序代码的根目录 我的小程序代码编译后的工程文件目录为&#xff1a;dist/dev/mp…

Java | Leetcode Java题解之第220题存在重复元素III

题目&#xff1a; 题解&#xff1a; class Solution {public boolean containsNearbyAlmostDuplicate(int[] nums, int k, int t) {int n nums.length;Map<Long, Long> map new HashMap<Long, Long>();long w (long) t 1;for (int i 0; i < n; i) {long i…

CANoe的capl调用Qt制作的dll

闲谈 因为Qt封装了很多个人感觉很好用的库&#xff0c;所以一直想通过CAPL去调用Qt实现一些功能&#xff0c;但是一直没机会&#xff08;网络上也没看到这方面的教程&#xff09;&#xff0c;这次自己用了两天&#xff0c;踩了很多坑&#xff0c;终于是做成了一个初步的调用方…

文件系统技术架构分析

一文读懂&#xff1a;什么是文件系统 &#xff0c;有哪几类&#xff1f; ▉ 什么是文件系统&#xff1f; 技术大拿眉头皱了皱&#xff0c;忍住快要爆发的情绪。解释到&#xff1a; 数据以二进制形式存储于介质&#xff0c;但高低电平含义难解。文件系统揭秘这些二进制背后的意…

运维Tips | Ubuntu 24.04 安装配置 xrdp 远程桌面服务

[ 知识是人生的灯塔&#xff0c;只有不断学习&#xff0c;才能照亮前行的道路 ] Ubuntu 24.04 Desktop 安装配置 xrdp 远程桌面服务 描述&#xff1a;Xrdp是一个微软远程桌面协议&#xff08;RDP&#xff09;的开源实现&#xff0c;它允许我们通过图形界面控制远程系统。这里使…

前端面试题(CSS篇四)

一、CSS 优化、提高性能的方法有哪些&#xff1f; 加载性能&#xff1a; &#xff08;1&#xff09;css压缩&#xff1a;将写好的css进行打包压缩&#xff0c;可以减少很多的体积。 &#xff08;2&#xff09;css单一样式&#xff1a;当需要下边距和左边距的时候&#xff0c;很…

商品期货多因子 全市场对冲模型

商品期货多因子 全市场对冲模型 本文由量化投资训练营撰写&#xff0c;首发于聚宽社区。无论是写公众号&#xff0c;还是身处从业环境&#xff0c;我们一直偏向资产配置和FICC&#xff08;Fixed income Currencies & Commodities&#xff0c;译为固定收益证券、货币及商品期…

Postman深度解析:打造高效接口测试自动化流程

《Postman深度解析&#xff1a;打造高效接口测试自动化流程》 一、概述与Postman核心优势 1. 接口测试的重要性与挑战 接口测试是确保软件系统各组成部分能够正确交互的关键环节。随着现代软件系统的复杂性增加&#xff0c;接口的数量和类型也在不断增长&#xff0c;这给接口测…

【工具分享】Gophish

文章目录 Gophish安装方式功能简介 Gophish Gophish 是一个开源的网络钓鱼框架&#xff0c;它被设计用于模拟真实世界的钓鱼攻击&#xff0c;以帮助企业和渗透测试人员测试和评估他们的网络钓鱼风险。Gophish 旨在使行业级的网络钓鱼培训对每个人都是可获取的&#xff0c;它易…

MeEdu网校系统搜索功能问题处理

MeEdu通过 MeiliSearch 实现全文搜索服务。 一、下载 MeiliSearch 程序 https://github.com/meilisearch/MeiliSearch/releases/tag/v0.24.0 只能下载 v0.24.0 版本&#xff0c;其版本不支持 下载 meilisearch-linux-amd64就可以了 二、上传 MeiliSearch 三、启动命令如下…

python爬虫入门(一)之HTTP请求和响应

一、爬虫的三个步骤&#xff08;要学习的内容&#xff09; 1、获取网页内容 &#xff08;HTTP请求、Requests库&#xff09; 2、解析网页内容 &#xff08;HTML网页结构、Beautiful Soup库&#xff09; 3、存储或分析数据 b站学习链接&#xff1a; 【【Python爬虫】爆肝两…

基于大象机器人UltraArm P340机械臂和传送带,实现教育场景中的自动化分拣系统!

引言 今天我们将展示一个高度自动化的模拟场景&#xff0c;展示多个机械臂与传送带协同工作的高效分拣系统。在这个场景中&#xff0c;机械臂通过视觉识别技术对物体进行分类&#xff0c;并通过精确的机械操作将它们放置在指定的位置。这一系统不仅提高了分拣的速度和准确性&am…

CH12_函数和事件

第12章&#xff1a;Javascript的函数和事件 本章目标 函数的概念掌握常用的系统函数掌握类型转换掌握Javascript的常用事件 课程回顾 Javascript中的循环有那些&#xff1f;Javascript中的各个循环特点是什么&#xff1f;Javascript中的各个循环语法分别是什么&#xff1f;…

什么是医学影像数据?

医学影像数据是指通过各种影像技术获取的人体内部结构和功能的可视化数据。这些影像技术包括但不限于X射线、计算机断层扫描&#xff08;CT&#xff09;、磁共振成像&#xff08;MRI&#xff09;、超声波&#xff08;US&#xff09;和正电子发射断层扫描&#xff08;PET&#x…

【ue5】虚幻5同时开多个项目

正常开ue5项目我是直接在桌面点击快捷方式进入 只会打开一个项目 如果再想打开一个项目需要进入epic 再点击启动就可以再开一个项目了

Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行

章节内容 上一节我们完成了&#xff1a; Metastore的基础概念配置模式&#xff1a;内嵌模式、本地模式、远程模式实机配置远程模式 并测试 背景介绍 这里是三台公网云服务器&#xff0c;每台 2C4G&#xff0c;搭建一个Hadoop的学习环境&#xff0c;供我学习。 之前已经在 V…

昇思25天学习打卡营第13天|K近邻算法实现红酒聚类

K近邻算法&#xff08;K-Nearest-Neighbor, KNN&#xff09;是一种用于分类和回归的非参数统计方法&#xff0c;是机器学习最基础的算法之一。它正是基于以上思想&#xff1a;要确定一个样本的类别&#xff0c;可以计算它与所有训练样本的距离&#xff0c;然后找出和该样本最接…

牛客链表题:BM1 反转链表(取头放尾法)

描述 给定一个单链表的头结点pHead(该头节点是有值的&#xff0c;比如在下图&#xff0c;它的val是1)&#xff0c;长度为n&#xff0c;反转该链表后&#xff0c;返回新链表的表头。 数据范围&#xff1a; 0≤&#x1d45b;≤10000≤n≤1000 要求&#xff1a;空间复杂度 &…

数据埋点从入门到了解

想讲讲为什么有埋点&#xff0c;举个例子 目录 什么是埋点&#xff1f;用途小红书上 埋点的主要类型代码示例1. 代码埋点前端埋点后端埋点 (Node.js 示例) 2. 全埋点示例3. 可视化埋点示例 解释常见问题埋点管理系统结论 王五是一名数据分析师&#xff0c;负责分析公司产品的用…

C++语言相关的常见面试题目(三)

1. List底层实现原理 省流&#xff1a; list底层实现了一个双向循环链表。 每个元素&#xff08;或节点&#xff09;包含三个部分&#xff1a;数据域(_M_Storage)、前驱指针(_M_prev)、后继指针(_M_next)。 数据域&#xff1a;存储实际数据。 前驱指针&#xff1a;指向链表中…