昇思25天学习打卡营第18天|Pix2Pix实现图像转换

Pix2Pix概述

Pix2Pix是基于条件生成对抗网络实现的一种深度学习图像转换模型。Pix2Pix是将cGAN应用于有监督的图像到图像翻译,包括生成器和判别器。

基础原理

cGAN的生成器是将输入图片作为指导信息,由输入图像不断尝试生成用于迷惑判别器的“假”图像,由输入图像转换输出为相应“假”图像的本质是从像素到另一个像素的映射,而传统GAN的生成器是基于一个给定的随机噪声生成图像,输出图像通过其他约束条件控制生成。Pix2Pix中判别器的任务是判断从生成器输出的图像是真实的训练图像还是生成的“假”图像。在生成器与判别器的不断博弈过程中,模型会达到一个平衡点,生成器输出的图像与真实训练数据使得判别器刚好具有50%的概率判断正确。

CGAN的目标损失函数为:

L_{cGAN}(G,D)=E_{(x,y)}[log(D(x,y))]+E_{(x,z)}[log(1-D(x,G(x,z)))]

目标函数是使判别器的损失最大化,而生成器的损失最小化。

pix2pix1

数据准备

from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/dataset_pix2pix.tar"download(url, "./dataset", kind="tar", replace=True)from mindspore import dataset as ds
import matplotlib.pyplot as pltdataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator(output_numpy=True))
# 可视化部分训练数据
plt.figure(figsize=(10, 3), dpi=140)
for i, image in enumerate(data_iter['input_images'][:10], 1):plt.subplot(3, 10, i)plt.axis("off")plt.imshow((image.transpose(1, 2, 0) + 1) / 2)
plt.show()

创建网络

生成器G结构

使用U-Net,它分为两个部分,其中左侧是由卷积和降采样操作组成的压缩路径,右侧是由卷积和上采样组成的扩张路径,扩张的每个网络块的输入由上一层上采样的特征和压缩路径部分的特征拼接而成。

pix2pix2

定义UNet Skip Connection Block

import mindspore
import mindspore.nn as nn
import mindspore.ops as opsclass UNetSkipConnectionBlock(nn.Cell):def __init__(self, outer_nc, inner_nc, in_planes=None, dropout=False,submodule=None, outermost=False, innermost=False, alpha=0.2, norm_mode='batch'):super(UNetSkipConnectionBlock, self).__init__()down_norm = nn.BatchNorm2d(inner_nc)up_norm = nn.BatchNorm2d(outer_nc)use_bias = Falseif norm_mode == 'instance':down_norm = nn.BatchNorm2d(inner_nc, affine=False)up_norm = nn.BatchNorm2d(outer_nc, affine=False)use_bias = Trueif in_planes is None:in_planes = outer_ncdown_conv = nn.Conv2d(in_planes, inner_nc, kernel_size=4,stride=2, padding=1, has_bias=use_bias, pad_mode='pad')down_relu = nn.LeakyReLU(alpha)up_relu = nn.ReLU()if outermost:up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,kernel_size=4, stride=2,padding=1, pad_mode='pad')down = [down_conv]up = [up_relu, up_conv, nn.Tanh()]model = down + [submodule] + upelif innermost:up_conv = nn.Conv2dTranspose(inner_nc, outer_nc,kernel_size=4, stride=2,padding=1, has_bias=use_bias, pad_mode='pad')down = [down_relu, down_conv]up = [up_relu, up_conv, up_norm]model = down + upelse:up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,kernel_size=4, stride=2,padding=1, has_bias=use_bias, pad_mode='pad')down = [down_relu, down_conv, down_norm]up = [up_relu, up_conv, up_norm]model = down + [submodule] + upif dropout:model.append(nn.Dropout(p=0.5))self.model = nn.SequentialCell(model)self.skip_connections = not outermostdef construct(self, x):out = self.model(x)if self.skip_connections:out = ops.concat((out, x), axis=1)return out

基于UNet的生成器

class UNetGenerator(nn.Cell):def __init__(self, in_planes, out_planes, ngf=64, n_layers=8, norm_mode='bn', dropout=False):super(UNetGenerator, self).__init__()unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=None,norm_mode=norm_mode, innermost=True)for _ in range(n_layers - 5):unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=unet_block,norm_mode=norm_mode, dropout=dropout)unet_block = UNetSkipConnectionBlock(ngf * 4, ngf * 8, in_planes=None, submodule=unet_block,norm_mode=norm_mode)unet_block = UNetSkipConnectionBlock(ngf * 2, ngf * 4, in_planes=None, submodule=unet_block,norm_mode=norm_mode)unet_block = UNetSkipConnectionBlock(ngf, ngf * 2, in_planes=None, submodule=unet_block,norm_mode=norm_mode)self.model = UNetSkipConnectionBlock(out_planes, ngf, in_planes=in_planes, submodule=unet_block,outermost=True, norm_mode=norm_mode)def construct(self, x):return self.model(x)

基于PatchGAN的判别器

生成的矩阵中的每个点代表原图的一小块区域(patch)。通过矩阵中的各个值来判断原图中对应每个Patch的真假。

import mindspore.nn as nnclass ConvNormRelu(nn.Cell):def __init__(self,in_planes,out_planes,kernel_size=4,stride=2,alpha=0.2,norm_mode='batch',pad_mode='CONSTANT',use_relu=True,padding=None):super(ConvNormRelu, self).__init__()norm = nn.BatchNorm2d(out_planes)if norm_mode == 'instance':norm = nn.BatchNorm2d(out_planes, affine=False)has_bias = (norm_mode == 'instance')if not padding:padding = (kernel_size - 1) // 2if pad_mode == 'CONSTANT':conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',has_bias=has_bias, padding=padding)layers = [conv, norm]else:paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))pad = nn.Pad(paddings=paddings, mode=pad_mode)conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', has_bias=has_bias)layers = [pad, conv, norm]if use_relu:relu = nn.ReLU()if alpha > 0:relu = nn.LeakyReLU(alpha)layers.append(relu)self.features = nn.SequentialCell(layers)def construct(self, x):output = self.features(x)return outputclass Discriminator(nn.Cell):def __init__(self, in_planes=3, ndf=64, n_layers=3, alpha=0.2, norm_mode='batch'):super(Discriminator, self).__init__()kernel_size = 4layers = [nn.Conv2d(in_planes, ndf, kernel_size, 2, pad_mode='pad', padding=1),nn.LeakyReLU(alpha)]nf_mult = ndffor i in range(1, n_layers):nf_mult_prev = nf_multnf_mult = min(2 ** i, 8) * ndflayers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode, padding=1))nf_mult_prev = nf_multnf_mult = min(2 ** n_layers, 8) * ndflayers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, padding=1))layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1))self.features = nn.SequentialCell(layers)def construct(self, x, y):x_y = ops.concat((x, y), axis=1)output = self.features(x_y)return output

Pix2Pix的生成器和判别器初始化

实例化Pix2Pix生成器和判别器

import mindspore.nn as nn
from mindspore.common import initializer as initg_in_planes = 3
g_out_planes = 3
g_ngf = 64
g_layers = 8
d_in_planes = 6
d_ndf = 64
d_layers = 3
alpha = 0.2
init_gain = 0.02
init_type = 'normal'net_generator = UNetGenerator(in_planes=g_in_planes, out_planes=g_out_planes,ngf=g_ngf, n_layers=g_layers)
for _, cell in net_generator.cells_and_names():if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):if init_type == 'normal':cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))elif init_type == 'xavier':cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))elif init_type == 'constant':cell.weight.set_data(init.initializer(0.001, cell.weight.shape))else:raise NotImplementedError('initialization method [%s] is not implemented' % init_type)elif isinstance(cell, nn.BatchNorm2d):cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))cell.beta.set_data(init.initializer('zeros', cell.beta.shape))net_discriminator = Discriminator(in_planes=d_in_planes, ndf=d_ndf,alpha=alpha, n_layers=d_layers)
for _, cell in net_discriminator.cells_and_names():if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):if init_type == 'normal':cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))elif init_type == 'xavier':cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))elif init_type == 'constant':cell.weight.set_data(init.initializer(0.001, cell.weight.shape))else:raise NotImplementedError('initialization method [%s] is not implemented' % init_type)elif isinstance(cell, nn.BatchNorm2d):cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))cell.beta.set_data(init.initializer('zeros', cell.beta.shape))class Pix2Pix(nn.Cell):"""Pix2Pix模型网络"""def __init__(self, discriminator, generator):super(Pix2Pix, self).__init__(auto_prefix=True)self.net_discriminator = discriminatorself.net_generator = generatordef construct(self, reala):fakeb = self.net_generator(reala)return fakeb

训练

包括训练判别器和生成器。训练判别器的目的是最大程度地提高判别图像真伪的概率。训练生成器是希望能产生更好的虚假图像。

代码实现:

import numpy as np
import os
import datetime
from mindspore import value_and_grad, Tensorepoch_num = 3
ckpt_dir = "results/ckpt"
dataset_size = 400
val_pic_size = 256
lr = 0.0002
n_epochs = 100
n_epochs_decay = 100def get_lr():lrs = [lr] * dataset_size * n_epochslr_epoch = 0for epoch in range(n_epochs_decay):lr_epoch = lr * (n_epochs_decay - epoch) / n_epochs_decaylrs += [lr_epoch] * dataset_sizelrs += [lr_epoch] * dataset_size * (epoch_num - n_epochs_decay - n_epochs)return Tensor(np.array(lrs).astype(np.float32))dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True, num_parallel_workers=1)
steps_per_epoch = dataset.get_dataset_size()
loss_f = nn.BCEWithLogitsLoss()
l1_loss = nn.L1Loss()def forword_dis(reala, realb):lambda_dis = 0.5fakeb = net_generator(reala)pred0 = net_discriminator(reala, fakeb)pred1 = net_discriminator(reala, realb)loss_d = loss_f(pred1, ops.ones_like(pred1)) + loss_f(pred0, ops.zeros_like(pred0))loss_dis = loss_d * lambda_disreturn loss_disdef forword_gan(reala, realb):lambda_gan = 0.5lambda_l1 = 100fakeb = net_generator(reala)pred0 = net_discriminator(reala, fakeb)loss_1 = loss_f(pred0, ops.ones_like(pred0))loss_2 = l1_loss(fakeb, realb)loss_gan = loss_1 * lambda_gan + loss_2 * lambda_l1return loss_gand_opt = nn.Adam(net_discriminator.trainable_params(), learning_rate=get_lr(),beta1=0.5, beta2=0.999, loss_scale=1)
g_opt = nn.Adam(net_generator.trainable_params(), learning_rate=get_lr(),beta1=0.5, beta2=0.999, loss_scale=1)grad_d = value_and_grad(forword_dis, None, net_discriminator.trainable_params())
grad_g = value_and_grad(forword_gan, None, net_generator.trainable_params())def train_step(reala, realb):loss_dis, d_grads = grad_d(reala, realb)loss_gan, g_grads = grad_g(reala, realb)d_opt(d_grads)g_opt(g_grads)return loss_dis, loss_ganif not os.path.isdir(ckpt_dir):os.makedirs(ckpt_dir)g_losses = []
d_losses = []
data_loader = dataset.create_dict_iterator(output_numpy=True, num_epochs=epoch_num)for epoch in range(epoch_num):for i, data in enumerate(data_loader):start_time = datetime.datetime.now()input_image = Tensor(data["input_images"])target_image = Tensor(data["target_images"])dis_loss, gen_loss = train_step(input_image, target_image)end_time = datetime.datetime.now()delta = (end_time - start_time).microsecondsif i % 2 == 0:print("ms per step:{:.2f}  epoch:{}/{}  step:{}/{}  Dloss:{:.4f}  Gloss:{:.4f} ".format((delta / 1000), (epoch + 1), (epoch_num), i, steps_per_epoch, float(dis_loss), float(gen_loss)))d_losses.append(dis_loss.asnumpy())g_losses.append(gen_loss.asnumpy())if (epoch + 1) == epoch_num:mindspore.save_checkpoint(net_generator, ckpt_dir + "Generator.ckpt")

推理

from mindspore import load_checkpoint, load_param_into_netparam_g = load_checkpoint(ckpt_dir + "Generator.ckpt")
load_param_into_net(net_generator, param_g)
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator())
predict_show = net_generator(data_iter["input_images"])
plt.figure(figsize=(10, 3), dpi=140)
for i in range(10):plt.subplot(2, 10, i + 1)plt.imshow((data_iter["input_images"][i].asnumpy().transpose(1, 2, 0) + 1) / 2)plt.axis("off")plt.subplots_adjust(wspace=0.05, hspace=0.02)plt.subplot(2, 10, i + 11)plt.imshow((predict_show[i].asnumpy().transpose(1, 2, 0) + 1) / 2)plt.axis("off")plt.subplots_adjust(wspace=0.05, hspace=0.02)
plt.show()

总结

Pix2Pix作为GAN的一种变体,再生成图像和扩充数据方面有着重要作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/41534.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实现沉浸式体验的秘诀:深入了解折幕投影技术!

在当今多媒体技术的浪潮中,投影技术已蜕变成为超越传统内容展示范畴的非凡工具,它深度融合了互动性与沉浸感,成为连接观众与虚拟世界的桥梁。折幕投影技术,作为这一领域的璀璨明珠,更是以其独特而神奇的手法&#xff0…

lua入门(2) - 数据类型

前言 本文参考自: Lua 数据类型 | 菜鸟教程 (runoob.com) 希望详细了解的小伙伴还请查看上方链接: 八个基本类型 type - 函数查看数据类型: 测试程序: print(type("Hello world")) --> string print(type(10.4*3)) --> number print(t…

WEB安全-靶场

1 需求 2 语法 3 示例 男黑客|在线渗透测试靶场|网络安全培训基地|男黑客安全网 4 参考资料

中英双语介绍伦敦大学学院(University College London,UCL)

中文版 伦敦大学学院(UCL)简介 位置和周边环境 伦敦大学学院(University College London,简称UCL)位于英国伦敦市中心的布卢姆斯伯里(Bloomsbury)区。具体地址为: Gower Street, …

C语言 -- 扫雷游戏

C语言 – 扫雷游戏 游戏规则: 给定一个棋盘,玩家需要排查出所有隐藏的雷,也就是选择出所有不是雷的地方。 玩家选择位置,若此处有雷,玩家被炸死,游戏结束; 若此处无雷,此处提示周围一…

12.SQL注入-盲注基于时间(base on time)

SQL注入-盲注基于时间(base on time) boolian的盲注类型还有返回信息的状态,但是基于时间的盲注就什么都没有返回信息。 输入payload语句进行睡5秒中,通过开发这工具查看时间,如图所示,会在5秒钟后在执行,因此存在基于…

基于Java技术的篮球论坛系统

你好呀,我是计算机学姐码农小野!如果有相关需求,可以私信联系我。 开发语言 Java 数据库 MySQL 技术 B/S模式、Java技术 工具 Visual Studio、MySQL数据库开发工具 系统展示 首页 用户注册界面 篮球论坛界面 个人中心界面 摘要 本…

Vite: 近几个版本的更新

概述 在 2021 年 2 月,尤大正式推出了 Vite 2.0 版本,可以说是 Vite 的一个重要转折点,自此之后 Vite 的用户量发生了非常迅速的增长,很快达到了每周 100 万的 npm 下载量。同时,Vite 的社区也越来越活跃,…

机器学习原理之 -- XGboost原理详解

XGBoost(eXtreme Gradient Boosting)是近年来在数据科学和机器学习领域中广受欢迎的集成学习算法。它在多个数据科学竞赛中表现出色,被广泛应用于各种机器学习任务。本文将详细介绍XGBoost的由来、基本原理、算法细节、优缺点及应用场景。 X…

14-38 剑和诗人12 - RAG+ 思维链 ⇒ 检索增强思维(RAT)

在快速发展的 NLP 和 LLM 领域,研究人员不断探索新技术来增强这些模型的功能。其中一种备受关注的技术是检索增强生成 (RAG) 方法,它将 LLM 的生成能力与从外部来源检索相关信息的能力相结合。然而,最近一项名为检索增强思维 (RAT) 的创新通过…

Go基础知识

目标 简单介绍一下 GO 语言的诞生背景,使用场景,目前使用方案简单介绍一下 GO的使用,GO的基础语法,简单过一下一些GO的语言例子着重介绍一下GO的特性,为什么大家都使用GO语言,GO的内存结构、为什么都说GO快…

【笔记】记一次在linux上通过在线安装mysql报错 CentOS 7 的官方镜像已经不再可用的解决方法+mysql配置

报错(恨恨恨恨恨恨恨!!!!!): [rootlocalhost ~]# sudo yum install mysql-server 已加载插件:fastestmirror, langpacks Determining fastest mirrors Could not retrie…

Unity中使用VectorGraphics插件时,VectorUtils.RenderSpriteToTexture2D方法返回结果错误的解决方法

Unity中使用VectorGraphics插件时,如果使用VectorUtils.BuildSprite方法创建Sprite,那么得到的Sprite往往是一个三角网格数比较多的Sprite,如果想要得到使用贴图只有两个三角面的方形Sprite,可以使用该插件提供的VectorUtils.Rend…

数据库概念题总结

1、 2、简述数据库设计过程中,每个设计阶段的任务 需求分析阶段:从现实业务中获取数据表单,报表等分析系统的数据特征,数据类型,数据约束描述系统的数据关系,数据处理要求建立系统的数据字典数据库设计…

ctfshow-web入门-文件包含(web82-web86)条件竞争实现session会话文件包含

目录 1、web82 2、web83 3、web84 4、web85 5、web86 1、web82 新增过滤点 . ,查看提示:利用 session 对话进行文件包含,通过条件竞争实现。 条件竞争这个知识点在文件上传、不死马利用与查杀这些里面也会涉及,如果大家不熟悉…

第一百四十八节 Java数据类型教程 - Java字符串搜索和Java子字符串

Java数据类型教程 - Java字符串搜索 我们可以使用indexOf()和lastIndexOf()方法获取另一个字符串中的字符或字符串的索引。例如 public class Main {public static void main(String[] args) {String str new String("Apple");int index str.indexOf("p"…

三界-欢迎来到Web3D+GIS学习天地!

三界-欢迎来到Web3DGIS学习天地! 地址:threelab.cn ** 坚持封装自己的引擎已经有三年了,每天都是加班熬夜开发功能,做东西。 虽然这段时间内,我一直在业余时间坚持开发,但实际投入的开发时间并不长&#…

Linux 系统管理4——账号管理

一、用户账号管理 1、用户账号概述 &#xff08;1&#xff09;用户账号的常见分类&#xff1a; 1>超级用户&#xff1a;root uid0 gid0 权限最大。 2>普通用户&#xff1a;uid>500 做一般权限的系统管理&#xff0c;权限有限。 3>程序用户&#xff1a;1<uid&l…

im即时通讯软件有哪些?WorkPlus安全专属移动数字化平台

IM即时通讯软件是为满足快速、即时沟通需求而设计的工具。在众多IM即时通讯软件中&#xff0c;WorkPlus作为一种安全专属移动数字化平台&#xff0c;为企业提供了全方位的移动办公解决方案&#xff0c;并注重信息安全和数据隐私保护。本文将介绍几种常见的IM即时通讯软件以及Wo…

渲染回调函数将音频传给音频单元

渲染回调函数将音频传给音频单元 渲染回调函数将音频传给音频单元了解音频单元渲染回调函数 渲染回调函数将音频传给音频单元 要将音频从磁盘或内存提供到音频单元输入总线&#xff0c;需使用符合 AURenderCallback 原型的渲染回调函数进行传输。当需要另一片样本帧时&#xf…