C++自定义智能指针

template <class T>
class counted_ptr;// 智能指针引用计数类
template <class T>
class Ref_Ptr
{friend class counted_ptr<T>;
private:T* m_pTtr; // 实际的指针size_t counted_ptr; // 引用计数Ref_Ptr(T* p);virtual ~Ref_Ptr();
};template <class T>
Ref_Ptr<T>::Ref_Ptr(T* p)
{m_pTtr = p;counted_ptr = 1;cout<<"Ref_Ptr() 构造函数调用!"<<endl;
}template <class T>
Ref_Ptr<T>::~Ref_Ptr()
{if (m_pTtr){cout<<"~Ref_Ptr() 析构函数函数调用"<<endl;delete m_pTtr;counted_ptr = 0;}m_pTtr = NULL;
}// 智能指针对象
template <class T>
class counted_ptr
{
private:Ref_Ptr<T>* m_pRef; // 引用计数
public:counted_ptr();counted_ptr(T* p);~counted_ptr();// 重载运算=,将左对象引用计数-1,并判断是否delete;将右对象+1;counted_ptr<T> & operator = (counted_ptr& other);// 重载指针操作*,->T& operator *();T* operator ->();// 拷贝构造函数,引用计数+1counted_ptr(counted_ptr<T>& other);
};
template <class T>
counted_ptr<T>::counted_ptr()
{m_pRef = NULL;
}template<class T>
counted_ptr<T>::counted_ptr(T* p)
{m_pRef = new Ref_Ptr<T>(p);cout<<"counted_ptr(T* p) 构造函数调用"<<endl;
}template <class T>
counted_ptr<T>::counted_ptr(counted_ptr<T>& other)
{this->m_pRef = other.m_pRef;++(m_pRef->counted_ptr);cout<<"counted_ptr(& other) 拷贝构造函数被调用,当前引用计数"<< this->m_pRef->counted_ptr<<endl;
}template <class T>
counted_ptr<T>& counted_ptr<T>::operator=(counted_ptr& other)
{// 将右操作对象引用计数+1++(other.m_pRef->counted_ptr);// 由于左操作对象指向了新对象,需要将操作数-1;// 同时也防止了自赋值的方式.// 首先要判断这个对象是否已经指向了其他对象,这个很重要!防止左指针对象为null的情况.if (this->m_pRef){if (--(this->m_pRef->counted_ptr) == 0){delete this->m_pRef;}}this->m_pRef = other.m_pRef;cout<<"operator = 被调用,当前引用计数"<< this->m_pRef->counted_ptr<<endl;return *this;
}template <class T>
T& counted_ptr<T>::operator *()
{return *(m_pRef->m_pTtr);
}template <class T>
T* counted_ptr<T>::operator->()
{return (m_pRef->m_pTtr);
}template <class T>
counted_ptr<T>::~counted_ptr()
{cout<<"~counted_ptr() 析构函数被调用"<<endl;if ((--m_pRef->counted_ptr) == 0){cout<<"删除"<<endl;delete m_pRef;m_pRef = NULL;}if (m_pRef){cout<<"当前引用计数:"<< m_pRef->counted_ptr<<endl;}
}int  main()
{counted_ptr<int>* pPtr = NULL;{counted_ptr<int> g_ptr;{// 声明一个ptr1智能指针,并测试*运算符counted_ptr<int> ptr1(new int(4));counted_ptr<int> ptr2;cout<< "*ptr1="<< *ptr1<<endl;// 将生存期小的ptr1赋值给生存期更大的g_ptr;ptr2 = ptr1;system("pause");g_ptr = ptr1;system("pause");}// new int(4)并没有销毁,因为引用计数还有1个cout<<" *g_ptr="<<*g_ptr << endl;system("pause");}system("pause");getchar();return 0;
}

参考 

std::shared_ptr - cppreference.com


创作不易,小小的支持一下吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/37829.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Arduino】实验使用ESP32控制可编程继电器制作跑马灯(图文)

今天小飞鱼实验使用ESP控制继电器&#xff0c;为了更好的掌握继电器的使用方法这里实验做了一个跑马灯的效果。 这里用到的可编程继电器&#xff0c;起始原理并不复杂&#xff0c;同样需要ESP32控制针脚输出高电平或低电平给到继电器&#xff0c;继电器使用这个信号控制一个电…

如何焊铜管 量测射频前端模块

先说结论 要做Port Extension待测物要上电 且根据逻辑表给Enable pin上电网分输入功率 不要太大 -20dBm即可铜管的接地 要足够 以及足够近铜管与待测物之间 必要时 隔一颗电容不要将匹配元件 也包含在量测范围讯号针不要直接焊在焊盘上 首先 铜管要做Port…

50-3 内网信息收集 - 域环境搭建

搭建准备: 在搭建准备阶段,我们需要准备三台 Windows 虚拟机:Windows Server 2012、Windows 7 和 Windows Server 2008。接下来,我们将配置 Windows Server 2012 作为域控制器,而 Windows 7 和 Windows Server 2008 将作为成员机加入域。建议保持这三台虚拟机的内存不超过…

(漏洞检查项) | 任意文件包含漏洞 file-include

(漏洞检查项)|任意文件包含漏洞 file-include 漏洞场景 1.含有动态包含语句 2.有类似于文件读取的url 漏洞描述 攻击者可以利用任意文件包含漏洞&#xff0c;读取任意文件&#xff0c;对服务器造成危害。 程序开发人员为了代码的灵活性&#xff0c;常常会将包含文件的路径…

influxdb时序数据库使用

influxdb时序数据库使用 1.1.免费无云influx申请1.2.Telegraf安装1.3.influxdb安装mac安装Redhat && Centos安装docker安装Kubernetes安装windows安装 1.4.influx CLI 安装1.5.influx命令行界面1.5.influx配置项权限认证配置管理 API 令牌 InfluxDB 是一个开源分布式时…

用通俗易懂方式讲解:快速部署大模型 ChatGLM3 并进行推理

在深入了解了一些大模型的知识之后&#xff0c;最好的方法是亲自动手搭建一个开源的大模型&#xff0c;以更深入地理解其工作原理。 在此基础上&#xff0c;我们将以 ChatGLM3 为例进行部署及推理&#xff0c;从而进一步探索大模型的应用和实践。 ChatGLM3简介&#xff1a; …

Alibaba Cloud Linux详解_操作系统兼容性_alinux稳定性全解析

Alibaba Cloud Linux是阿里云自研的稳定、安全、高性能的服务器Linux操作系统&#xff0c;完全兼容CentOS/RHEL生态和操作方式&#xff0c;又阿里云提供免费提供长期支持和维护LTS。Alibaba Cloud Linux是目前阿里云服务器最大规模使用的操作系统之一&#xff0c;可部署在Web网…

无刷直流电机(BLDCM)位置识别SVPWM控制

无刷直流电机&#xff0c;即BLDCM&#xff0c;在各个行业应用非常广泛。我们最熟悉的是在四轴飞行器中的应用&#xff0c;其中的电机基本都是BLDCM。除此之外&#xff0c;汽车电子、家用电器、航空航天、办公自动化、机器人等领域都有重要应用。 梯形波/方波无刷直流电机被称为…

基于单片机技术的按键扫描电路分析

摘 要&#xff1a; 单片机应用技术被广泛应用于各种智能控制系统中&#xff0c;是电子信息类专业学生必修的一门专业课。在单片机端口信息输入模块中&#xff0c;按键是主要元器件之一&#xff0c;笔者主要介绍矩阵键盘的电路设计及控制程序编写&#xff0c;分析了单片机端口连…

python-20-零基础自学python-用类和while设计一个掷多次、多面骰子的工具的基础

学习内容&#xff1a;《python编程&#xff1a;从入门到实践》第二版 知识点&#xff1a;类、random、while循环、把while循环和类结合起来 练习内容&#xff1a; 练习9-13&#xff1a;骰子 创建一个Die类&#xff0c;它包含一个名为sides的属性&#xff0c;该属性的默认值…

汽车电子行业知识:什么是电子后视镜

文章目录 1.什么是电子后视镜2.有哪些汽车用到了电子后视镜3.电子后视镜的原理及算法4.电子后视镜的优点5.电子后视镜的未来市场将继续增长 1.什么是电子后视镜 电子后视镜是一种集成了电子元件和显示屏的汽车后视镜&#xff0c;用于替代传统的机械后视镜。它通过内置的摄像头捕…

数字信号处理实验一(离散信号及离散系统的MATLAB编程实现)

实验要求&#xff1a; 离散信号及离散系统的MATLAB编程实现&#xff08;2学时&#xff09; 要求&#xff1a; 编写一程序&#xff0c;输出一定长度&#xff08;点数&#xff09;&#xff0c;具有一定幅度、&#xff08;角&#xff09;频率和初始相位的实&#xff08;或复&…

grpc学习golang版( 一、基本概念与安装 )

系列文章目录 第一章 grpc基本概念与安装 第二章 grpc入门示例 第三章 proto文件数据类型 第四章 多服务示例 第五章 多proto文件示例 第六章 服务器流式传输 第七章 客户端流式传输 第八章 双向流示例 文章目录 一、基本介绍1.1 什么是rpc1.2 什么是grpc1.3 grpc的作用1.4 grp…

PG备份与恢复

一、开启WAL归档 1、创建归档目录 我们除了存储数据目录pgdata之外&#xff0c;还要创建backups&#xff0c;scripts&#xff0c;archive_wals文件 mkdir -p /home/mydba/pgdata/arch mkdir -p /home/mydba/pgdata/scripts mkdir -p /home/mydba/backups chown -R mydba.myd…

docker网络功能介绍

一、 网络启动过程二、 修改容器dns和主机名① 临时处理&#xff08;容器终止或重启后不会保存&#xff09;② 通过参数指定 三、 容器内访问控制① 容器访问外部网络② 容器间互相访问&#xff08;1&#xff09;访问所有端口&#xff08;2&#xff09;访问指定端口 四、 docke…

SpringDataJPA系列(1)JPA概述

SpringDataJPA系列(1)JPA概述 SpringDataJPA似乎越来越流行了&#xff0c;我厂的mysql数据库和MongoDB数据库持久层都依赖了SpringDataJPA。为了更好的使用它&#xff0c;我们内部还对MongoDB的做了进一步的抽象和封装。为了查漏补缺&#xff0c;温故而知新&#xff0c;整理下…

统计分析利器:深入解读卡方检验与单因素方差分析的应用案例【练习题】

一、卡方检验 1.对400人进行问卷调查&#xff0c;询问对于教学改革的看法&#xff0c;调查结果如下表所示&#xff0c;请问不同学科不同性别的人意见是否相同。 学科 男生 女生 工科 80 40 理科 120 160 &#xff08;性别&#xff0c;学科均无序分类>卡方检验&am…

grpc学习golang版( 二、入门示例 )

系列文章目录 第一章 grpc基本概念与安装 第二章 grpc入门示例 第三章 proto文件数据类型 第四章 多服务示例 第五章 多proto文件示例 第六章 服务器流式传输 第七章 客户端流式传输 第八章 双向流示例 文章目录 一、环境二、编写protobuf文件三、编写server服务端四、编写Clie…

前端路由管理

前端路由管理简介&#xff1a; 当谈到前端路由管理时&#xff0c;通常指的是在单页面应用程序&#xff08;SPA&#xff09;中管理页面间导航和URL的过程。路由管理器是一个工具&#xff0c;可以帮助前端开发者定义应用程序的不同视图之间的关系&#xff0c;同时能够响应URL的改…

Uboot重定位

Uboot重定位 一、重定位的意义二、介绍一些重定位相关的表项结构(节)三、uboot的重定位过程:一、重定位的意义 uboot的重定位有两次,第一次是在编译成镜像后,在makefile中调用进行处理的,其调用tools/riscv_prelink.c的代码进行重定位处理(主要就是对重定位表中的R_RIS…