C++实现一个简单的Qt信号槽机制

昨天写这个文章《深入探讨C++的高级反射机制(2):写个能用的反射库》的时候就在想,是不是也能在这套反射逻辑的基础上,实现一个类似Qt的信号槽机制?

Qt信号槽机制简介

所谓的Qt的信号槽(Signals and Slots)机制,是Qt框架中实现对象之间通信的一种方式。这是一个事件驱动程序中常见的设计模式。信号槽机制允许创建响应特定事件(如用户交互、数据变化等)的可重用组件。
信号槽主要有以下核心概念组成:

信号(Signals)

信号是一个类成员函数的声明,它在类内部以 signals: 关键词标识。当某个事件发生时,可以发射(emit)信号。信号不包含具体的实现代码,只是一个通知机制。它告诉外界某个事件已经发生,比如按钮被点击或者定时器超时。

槽(Slots)

槽是一个普通的成员函数,可以是公有的、保护的或私有的,它在类内部以 slots: 关键词标识(Qt 5 开始,普通的成员函数也可以作为槽)。槽函数包含了当信号发射时应该执行的代码。换句话说,槽函数是对信号的响应。

连接(Connection)

信号和槽之间的连接是通过 QObject::connect() 函数建立的。这个连接指定了当信号发射时,应该调用哪个槽函数。一个信号可以连接到多个槽,一个槽也可以接收来自多个信号的通知。

示例

以下是一个简单的Qt信号和槽的例子,展示了这个机制如何工作:

#include <QObject>class Button : public QObject {Q_OBJECTpublic:Button() {}signals:void clicked(); // 信号声明public slots:void onClick() { // 槽声明// 处理按钮点击事件}
};int main() {Button button;// 连接按钮的 clicked 信号到同一个按钮的 onClick 槽QObject::connect(&button, &Button::clicked, &button, &Button::onClick);// 在某个地方,按钮被点击,发射信号emit button.clicked();return 0;
}#include "main.moc" // 如果使用qmake或CMake,通常不需要这一行

在这个例子中,当按钮被点击时,它会发射 clicked 信号,这会导致调用与它连接的 onClick 槽函数。

信号槽机制的优点在于它提供了一种松耦合的方式来处理事件。对象不需要知道哪些对象或函数对它们的信号感兴趣,它们只需在合适的时候发射信号。这样可以创建可重用和可维护的组件,同时简化了应用程序的事件处理逻辑。

我们的实现思路

为了实现类似于Qt信号槽的机制,我们需要一个类似QObject的基类。为了避免引入新概念,我们这个类也直接较QObject好了。类中实现信号的发射(emit)和槽的连接(connect)。
笔者不太喜欢Qt的connect函数是个静态函数,所以我们这里的实现稍微和Qt不一样,我们的connect函数是个普通成员函数,用于将自己的信号连接到目标槽上。
接下来,我们需要声明信号的机制。我们通过定义宏DECL_SIGNAL来声明一个信号,并实现相应的连接和断开连接的逻辑。
于是,我们的信号槽大概用法如下:


// 用户自定义的结构体
class MyStruct : public refl::QObject // 信号槽等功能从这个类派生
{
public:// 定义一个方法,用作槽函数,必须在REFLECTABLE_MENBER_FUNCS列表中,并且参数必须是std::any,不能超过4个参数。std::any on_x_value_modified(std::any new_value) {int value = std::any_cast<int>(new_value);std::cout << "MyStruct::on_x_value_modified called! New value is: " << value << std::endl;return 0;}REFLECTABLE_MENBER_FUNCS(MyStruct,REFLEC_FUNCTION(on_x_value_modified));DECL_SIGNAL(x_value_modified, int) // 声明信号x_value_modifiedDECL_DYNAMIC_REFLECTABLE(MyStruct)//动态反射的支持
};// 信号槽的连接和调用:MyStruct obj1;
MyStruct obj2;// 连接obj1的信号到obj2的槽函数
size_t connection_id = obj1.**connect**("x_value_modified", &obj2, "on_x_value_modified");
if (connection_id != 0) {std::cout << "Signal x_value_modified from obj1 connected to on_x_value_modified slot in obj2." << std::endl;
}
obj1.x_value_modified(42);// 触发信号// 断开连接
obj1.**disconnect**(connection_id);
// 再次触发信号,应该没有任何输出,因为已经断开连接
obj1.x_value_modified(84);

有了用法的情况下,我们就有了目标了。
这个是我们DECL_SIGNAL和QObject的实现:

//宏用于类中声明信号,并提供一个同名的方法来触发信号。#define DECL_SIGNAL(signal_name, ...) \template<typename... Args> \void signal_name(Args&&... args) { \emit_signal_impl(#signal_name, std::forward<Args>(args)...); \} \
class QObject : public refl::dynamic::IReflectable {private:// 信号与槽的映射,键是信号名称,值是一组槽函数的信息std::unordered_map<std::string, std::vector<std::pair<QObject*, std::string>>> connections;size_t next_connection_id = 1;std::map<size_t, std::pair<std::string, std::pair<QObject*, std::string>>> connection_map;public:template<typename... Args>void emit_signal_impl(const char* signal_name, Args&&... args) {auto it = connections.find(signal_name);if (it != connections.end()) {for (auto& slot_info : it->second) {slot_info.first->invoke_member_func_by_name(slot_info.second.c_str(), std::forward<Args>(args)...);//invoke_member_func_type_safe(*slot_info.first, slot_info.second.c_str(), std::forward<Args>(args)...); }}}size_t connect(const char* signal_name, QObject* target, const char* target_member_func_name) {if (!target || !signal_name || !target_member_func_name) return 0;connections[signal_name].emplace_back(target, target_member_func_name);size_t id = next_connection_id++;connection_map[id] = { signal_name, {target, target_member_func_name} };return id;}bool disconnect(size_t connection_id) {auto it = connection_map.find(connection_id);if (it != connection_map.end()) {auto& [signal_name, slot_info] = it->second;auto& slots = connections[signal_name];slots.erase(std::remove(slots.begin(), slots.end(), slot_info), slots.end());connection_map.erase(it);return true;}return false;}};

运行起来,还不错:
在这里插入图片描述

但是这段代码很不优雅:

size_t connection_id = obj1.connect("x_value_modified", &obj2, "on_x_value_modified");

因为都是字符串,万一打错了单词还不容易发现。我们是否可以优化成这种形式:

size_t connection_id = obj1.connect(&MyStruct::x_value_modified, &obj2, &MyStruct::on_x_value_modified);

实现这种形式也不难,我们需要对connect方法进行重载,使其能接受成员函数指针而不是字符串。并能从成员函数指针中提取其函数名称。

template <typename SignalClass, typename SignalType, typename SlotClass, typename SlotType>size_t connect(SignalType SignalClass::*signal, SlotClass* slot_instance, SlotType SlotClass::*slot) {const char* signal_name = get_member_func_name<SignalClass>(signal);const char* slot_name = get_member_func_name<SlotClass>(slot);if (signal_name && slot_name) {return connect(signal_name, static_cast<QObject*>(slot_instance), slot_name);}return 0; // Failed}

由于我们已经有了之前反射库的实现经验,get_member_func_name的实现也信手拈来:

template <typename T, typename FuncTuple, size_t N = 0>
constexpr const char* __get_member_func_name_impl(void* func_ptr, const FuncTuple& tp) {if constexpr (N >= std::tuple_size_v<FuncTuple>) {return nullptr; // Not Found!} else {const auto& func = std::get<N>(tp);if (reinterpret_cast<void*>(func.get_func()) == func_ptr) {return func.name;} else {return __get_member_func_name_impl<T, FuncTuple, N + 1>(func_ptr, tp);}}
}template <typename T, typename FuncPtr>
constexpr const char* get_member_func_name(FuncPtr func_ptr) {constexpr auto funcs = T::member_funcs();return __get_member_func_name_impl<T>(reinterpret_cast<void*>(func_ptr), funcs);
}

不过编译下来,发现这种做法有点问题,前面DECL_SIGNAL声明的是一个变参模板函数,导致无法对其进行取地址:

#define DECL_SIGNAL(signal_name, ...) \template<typename... Args> \void signal_name(Args&&... args) { \emit_signal_impl(#signal_name, std::forward<Args>(args)...); \} \

直接取地址是会报错的:
在这里插入图片描述
经过一轮思索,于是把DECL_SIGNAL的使用形式改为:IMPL_SIGNAL:

	//宏用于类中声明信号,并提供一个同名的方法来触发信号。示例:/*	void x_value_modified(int param) {IMPL_SIGNAL(param);}*/#define IMPL_SIGNAL(...) raw_emit_signal_impl(__func__ , __VA_ARGS__)

于是,前面的类声明信号的部分由

DECL_SIGNAL(x_value_modified, int) // 声明信号x_value_modified

变为:

void x_value_modified(int param) {IMPL_SIGNAL(param);}

新的定义提供了更好的类型安全保障,避免参数个数和类型传错了导致发射信号失败。同时兼容我们更安全的connect的版本。
在这里插入图片描述

好了,就先这样吧。以后有时间继续优化。

这次完整的代码如下:

#include <iostream>
#include <tuple>
#include <stdexcept>
#include <assert.h>
#include <string_view>
#include <optional>
#include <utility> // For std::forward
#include <unordered_map>
#include <functional>
#include <memory>
#include <any>
#include <type_traits> // For std::is_invocable
#include <map>namespace refl {// 这个宏用于创建字段信息
#define REFLECTABLE_PROPERTIES(TypeName, ...)  using CURRENT_TYPE_NAME = TypeName; \static constexpr auto properties() { return std::make_tuple(__VA_ARGS__); }
#define REFLECTABLE_MENBER_FUNCS(TypeName, ...) using CURRENT_TYPE_NAME = TypeName; \static constexpr auto member_funcs() { return std::make_tuple(__VA_ARGS__); }// 这个宏用于创建属性信息,并自动将字段名转换为字符串
#define REFLEC_PROPERTY(Name) refl::Property<decltype(&CURRENT_TYPE_NAME::Name), &CURRENT_TYPE_NAME::Name>(#Name)
#define REFLEC_FUNCTION(Func) refl::Function<decltype(&CURRENT_TYPE_NAME::Func), &CURRENT_TYPE_NAME::Func>(#Func)// 定义一个属性结构体,存储字段名称和值的指针template <typename T, T Value>struct Property {const char* name;constexpr Property(const char* name) : name(name) {}constexpr T get_value() const { return Value; }};template <typename T, T Value>struct Function {const char* name;constexpr Function(const char* name) : name(name) {}constexpr T get_func() const { return Value; }};// 使用 std::any 来处理不同类型的字段值和函数返回值template <typename T, typename Tuple, size_t N = 0>std::any __get_field_value_impl(T& obj, const char* name, const Tuple& tp) {if constexpr (N >= std::tuple_size_v<Tuple>) {return std::any();// Not Found!}else {const auto& prop = std::get<N>(tp);if (std::string_view(prop.name) == name) {return std::any(obj.*(prop.get_value()));}else {return __get_field_value_impl<T, Tuple, N + 1>(obj, name, tp);}}}// 使用 std::any 来处理不同类型的字段值和函数返回值template <typename T, size_t N = 0>std::any get_field_value(T& obj, const char* name) {return __get_field_value_impl(obj, name, T::properties());}// 使用 std::any 来处理不同类型的字段值和函数返回值template <typename T, typename Tuple, typename Value, size_t N = 0>std::any __assign_field_value_impl(T& obj, const char* name, const Value& value, const Tuple& tp) {if constexpr (N >= std::tuple_size_v<Tuple>) {return std::any();// Not Found!}else {const auto& prop = std::get<N>(tp);if (std::string_view(prop.name) == name) {if constexpr (std::is_assignable_v<decltype(obj.*(prop.get_value())), Value>) {obj.*(prop.get_value()) = value;return std::any(obj.*(prop.get_value()));}else {assert(false);// 无法赋值 类型不匹配!!return std::any();}}else {return __assign_field_value_impl<T, Tuple, Value, N + 1>(obj, name, value, tp);}}}template <typename T, typename Value>std::any assign_field_value(T& obj, const char* name, const Value& value) {return __assign_field_value_impl(obj, name, value, T::properties());}// 成员函数调用相关:template <bool assert_when_error = true, typename T, typename FuncTuple, size_t N = 0, typename... Args>constexpr std::any __invoke_member_func_impl(T& obj, const char* name, const FuncTuple& tp, Args&&... args) {if constexpr (N >= std::tuple_size_v<FuncTuple>) {assert(!assert_when_error);// 没找到!return std::any();// Not Found!}else {const auto& func = std::get<N>(tp);if (std::string_view(func.name) == name) {if constexpr (std::is_invocable_v<decltype(func.get_func()), T&, Args...>) {if constexpr (std::is_void<decltype(std::invoke(func.get_func(), obj, std::forward<Args>(args)...))>::value) {// 如果函数返回空,那么兼容这种casestd::invoke(func.get_func(), obj, std::forward<Args>(args)...);return std::any();}else {return std::invoke(func.get_func(), obj, std::forward<Args>(args)...);}}else {assert(!assert_when_error);// 调用参数不匹配return std::any();}}else {return __invoke_member_func_impl<assert_when_error, T, FuncTuple, N + 1>(obj, name, tp, std::forward<Args>(args)...);}}}template <typename T, typename... Args>constexpr std::any invoke_member_func(T& obj, const char* name, Args&&... args) {constexpr auto funcs = T::member_funcs();return __invoke_member_func_impl(obj, name, funcs, std::forward<Args>(args)...);}template <typename T, typename... Args>constexpr std::any invoke_member_func_safe(T& obj, const char* name, Args&&... args) {constexpr auto funcs = T::member_funcs();return __invoke_member_func_impl<true>(obj, name, funcs, std::forward<Args>(args)...);}template <typename T, typename FuncPtr, typename FuncTuple, size_t N = 0>constexpr const char* __get_member_func_name_impl(FuncPtr func_ptr, const FuncTuple& tp) {if constexpr (N >= std::tuple_size_v<FuncTuple>) {return nullptr; // Not Found!}else {const auto& func = std::get<N>(tp);if constexpr (std::is_same< decltype(func.get_func()), FuncPtr >::value) {return func.name;}else {return __get_member_func_name_impl<T, FuncPtr, FuncTuple, N + 1>(func_ptr, tp);}}}template <typename T, typename FuncPtr>constexpr const char* get_member_func_name(FuncPtr func_ptr) {constexpr auto funcs = T::member_funcs();return __get_member_func_name_impl<T, FuncPtr>(func_ptr, funcs);}// 定义一个类型特征模板,用于获取属性信息template <typename T>struct For {static_assert(std::is_class_v<T>, "Reflector requires a class type.");// 遍历所有字段名称template <typename Func>static void for_each_propertie_name(Func&& func) {constexpr auto props = T::properties();std::apply([&](auto... x) {((func(x.name)), ...);}, props);}// 遍历所有字段值template <typename Func>static void for_each_propertie_value(T& obj, Func&& func) {constexpr auto props = T::properties();std::apply([&](auto... x) {((func(x.name, obj.*(x.get_value()))), ...);}, props);}// 遍历所有函数名称template <typename Func>static void for_each_member_func_name(Func&& func) {constexpr auto props = T::member_funcs();std::apply([&](auto... x) {((func(x.name)), ...);}, props);}};// ===============================================================// 以下是动态反射机制的支持代码:namespace dynamic {// 反射基类class IReflectable {public:virtual ~IReflectable() = default;virtual std::string_view get_type_name() const = 0;virtual std::any get_field_value_by_name(const char* name) const = 0;virtual std::any invoke_member_func_by_name(const char* name) = 0;virtual std::any invoke_member_func_by_name(const char* name, std::any param1) = 0;virtual std::any invoke_member_func_by_name(const char* name, std::any param1, std::any param2) = 0;virtual std::any invoke_member_func_by_name(const char* name, std::any param1, std::any param2, std::any param3) = 0;virtual std::any invoke_member_func_by_name(const char* name, std::any param1, std::any param2, std::any param3, std::any param4) = 0;// 不能无限增加,会增加虚表大小。最多支持4个参数的调用。};// 类型注册工具class TypeRegistry {public:using CreatorFunc = std::function<std::unique_ptr<IReflectable>()>;static TypeRegistry& instance() {static TypeRegistry registry;return registry;}void register_type(const std::string_view type_name, CreatorFunc creator) {creators[type_name] = std::move(creator);}std::unique_ptr<IReflectable> create(const std::string_view type_name) {if (auto it = creators.find(type_name); it != creators.end()) {return it->second();}return nullptr;}private:std::unordered_map<std::string_view, CreatorFunc> creators;};// 用于注册类型信息的宏
#define DECL_DYNAMIC_REFLECTABLE(TypeName) \friend class refl::dynamic::TypeRegistryEntry<TypeName>; \static std::string_view static_type_name() { return #TypeName; } \virtual std::string_view get_type_name() const override { return static_type_name(); } \static std::unique_ptr<::refl::dynamic::IReflectable> create_instance() { return std::make_unique<TypeName>(); } \static const bool is_registered; \std::any get_field_value_by_name(const char* name) const override { \return refl::get_field_value(*this, name); \} \std::any invoke_member_func_by_name(const char* name) override { \return refl::invoke_member_func(*static_cast<TypeName*>(this), name); \}\std::any invoke_member_func_by_name(const char* name, std::any param1) override { \return refl::invoke_member_func(*static_cast<TypeName*>(this), name, param1); \}\std::any invoke_member_func_by_name(const char* name, std::any param1, std::any param2) override { \return refl::invoke_member_func(*static_cast<TypeName*>(this), name, param1, param2); \}\std::any invoke_member_func_by_name(const char* name, std::any param1, std::any param2, std::any param3) override { \return refl::invoke_member_func(*static_cast<TypeName*>(this), name, param1, param2, param3); \}\std::any invoke_member_func_by_name(const char* name, std::any param1, std::any param2, std::any param3, std::any param4) override { \return refl::invoke_member_func(*static_cast<TypeName*>(this), name, param1, param2, param3, param4); \}\
// 用于在静态区域注册类型的辅助类template <typename T>class TypeRegistryEntry {public:TypeRegistryEntry() {::refl::dynamic::TypeRegistry::instance().register_type(T::static_type_name(), &T::create_instance);}};// 为每个类型定义注册变量,这段宏需要出现在cpp中。
#define REGEDIT_DYNAMIC_REFLECTABLE(TypeName) \const bool TypeName::is_registered = [] { \static ::refl::dynamic::TypeRegistryEntry<TypeName> entry; \return true; \}();}//namespace dynamic//宏用于类中声明信号,并提供一个同名的方法来触发信号。示例:/*	void x_value_modified(int param) {IMPL_SIGNAL(param);}*/
#define IMPL_SIGNAL(...) raw_emit_signal_impl(__func__ , __VA_ARGS__)class QObject : public refl::dynamic::IReflectable {private:// 信号与槽的映射,键是信号名称,值是一组槽函数的信息std::unordered_map<std::string, std::vector<std::pair<QObject*, std::string>>> connections;size_t next_connection_id = 1;std::map<size_t, std::pair<std::string, std::pair<QObject*, std::string>>> connection_map;public:template<typename... Args>void raw_emit_signal_impl(const char* signal_name, Args&&... args) {auto it = connections.find(signal_name);if (it != connections.end()) {for (auto& slot_info : it->second) {slot_info.first->invoke_member_func_by_name(slot_info.second.c_str(), std::forward<Args>(args)...);//invoke_member_func_type_safe(*slot_info.first, slot_info.second.c_str(), std::forward<Args>(args)...); }}else {assert(false);}}size_t connect(const char* signal_name, QObject* target, const char* target_member_func_name) {if (!target || !signal_name || !target_member_func_name) return 0;connections[signal_name].emplace_back(target, target_member_func_name);size_t id = next_connection_id++;connection_map[id] = { signal_name, {target, target_member_func_name} };return id;}template <typename SignalClass, typename SignalType, typename SlotClass, typename SlotType>size_t connect(SignalType SignalClass::* signal, SlotClass* slot_instance, SlotType SlotClass::* slot) {const char* signal_name = get_member_func_name<SignalClass>(signal);const char* slot_name = get_member_func_name<SlotClass>(slot);if (signal_name && slot_name) {return connect(signal_name, static_cast<QObject*>(slot_instance), slot_name);}return 0; // Failed}bool disconnect(size_t connection_id) {auto it = connection_map.find(connection_id);if (it != connection_map.end()) {auto& [signal_name, slot_info] = it->second;auto& slots = connections[signal_name];slots.erase(std::remove(slots.begin(), slots.end(), slot_info), slots.end());connection_map.erase(it);return true;}return false;}};}// namespace refl// =========================一下为使用示例代码====================================// 用户自定义的结构体
class MyStruct ://public refl::dynamic::IReflectable 	// 如果不需要动态反射,可以不从public refl::dynamic::IReflectable派生public refl::QObject // 这里我们也测试信号槽等功能,因此从这个类派生
{public:int x{ 10 };double y{ 20.5f };int print() const {std::cout << "MyStruct::print called! " << "x: " << x << ", y: " << y << std::endl;return 666;}// 如果需要支持动态调用,参数必须是std::any,并且不能超过4个参数。int print_with_arg(std::any param) const {std::cout << "MyStruct::print called! " << " arg is: " << std::any_cast<int>(param) << std::endl;return 888;}// 定义一个方法,用作槽函数,必须在REFLECTABLE_MENBER_FUNCS列表中,不支持返回值,并且参数必须是std::any,不能超过4个参数。std::any on_x_value_modified(std::any& new_value) {int value = std::any_cast<int>(new_value);std::cout << "MyStruct::on_x_value_modified called! New value is: " << value << std::endl;return 0;}void x_value_modified(std::any param) {IMPL_SIGNAL(param);}REFLECTABLE_PROPERTIES(MyStruct,REFLEC_PROPERTY(x),REFLEC_PROPERTY(y));REFLECTABLE_MENBER_FUNCS(MyStruct,REFLEC_FUNCTION(print),REFLEC_FUNCTION(print_with_arg),REFLEC_FUNCTION(on_x_value_modified),REFLEC_FUNCTION(x_value_modified));DECL_DYNAMIC_REFLECTABLE(MyStruct)//动态反射的支持,如果不需要动态反射,可以去掉这行代码
};//动态反射注册类
REGEDIT_DYNAMIC_REFLECTABLE(MyStruct)int main() {MyStruct obj;// # 静态反射部分:// 打印所有字段名称refl::For<MyStruct>::for_each_propertie_name([](const char* name) {std::cout << "Field name: " << name << std::endl;});// 打印所有字段值refl::For<MyStruct>::for_each_propertie_value(obj, [](const char* name, auto&& value) {std::cout << "Field " << name << " has value: " << value << std::endl;});// 打印所有函数名称refl::For<MyStruct>::for_each_member_func_name([](const char* name) {std::cout << "Member func name: " << name << std::endl;});// 获取特定成员的值,如果找不到成员,则返回默认值auto x_value = refl::get_field_value(obj, "x");std::cout << "Field x has value: " << std::any_cast<int>(x_value) << std::endl;auto y_value = refl::get_field_value(obj, "y");std::cout << "Field y has value: " << std::any_cast<double>(y_value) << std::endl;//修改值:refl::assign_field_value(obj, "y", 33.33f);y_value = refl::get_field_value(obj, "y");std::cout << "Field y has modifyed,new value is: " << std::any_cast<double>(y_value) << std::endl;auto z_value = refl::get_field_value(obj, "z"); // "z" 不存在if (z_value.type().name() == std::string_view("int")) {std::cout << "Field z has value: " << std::any_cast<int>(z_value) << std::endl;}// 通过字符串调用成员函数 'print'auto print_ret = refl::invoke_member_func_safe(obj, "print");std::cout << "print member return: " << std::any_cast<int>(print_ret) << std::endl;std::cout << "---------------------动态反射部分:" << std::endl;// 动态反射部分(动态反射完全不需要知道类型MyStruct的定义):// 动态创建 MyStruct 实例并调用方法auto instance = refl::dynamic::TypeRegistry::instance().create("MyStruct");if (instance) {std::cout << "Dynamic instance type: " << instance->get_type_name() << std::endl;// 这里可以调用 MyStruct 的成员方法auto x_value2 = instance->get_field_value_by_name("x");std::cout << "Field x has value: " << std::any_cast<int>(x_value2) << std::endl;instance->invoke_member_func_by_name("print");instance->invoke_member_func_by_name("print_with_arg", 10);//instance->invoke_member_func_by_name("print_with_arg", 20, 222);//这个调用会失败,命中断言,因为print_with_arg只接受一个函数}// 信号槽部分:std::cout << "---------------------信号槽部分:" << std::endl;MyStruct obj1;MyStruct obj2;// 连接obj1的信号到obj2的槽函数size_t connection_id = obj1.connect("x_value_modified", &obj2, "on_x_value_modified");if (connection_id != 0) {std::cout << "Signal x_value_modified from obj1 connected to on_x_value_modified slot in obj2." << std::endl;}obj1.x_value_modified(42);// 触发信号// 断开连接obj1.disconnect(connection_id);// 再次触发信号,应该没有任何输出,因为已经断开连接obj1.x_value_modified(84);// 使用成员函数指针版本的connectconnection_id = obj1.connect(&MyStruct::x_value_modified, &obj2, &MyStruct::on_x_value_modified);if (connection_id != 0) {std::cout << "Signal connected to slot." << std::endl;}obj1.x_value_modified(666);// 触发信号return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/36234.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于VUE3+VITE+SpringBoot+Nginx部署项目之跨域配置等问题

前言&#xff1a;遇到问题&#xff0c;解决问题。 第一部分&#xff1a;VUE 配置 1、vite.config.js 文件 server: {proxy: {/api: {target: env.VITE_BASE_URL,changeOrigin: true,secure: false,rewrite: path > path.replace(/^\/api/, )}}}, 2、.env 文件 VITE_BAS…

springcloud-config 客户端启用服务发现client的情况下使用metadata中的username和password

为了让spring admin 能正确获取到 spring config的actuator的信息&#xff0c;在eureka的metadata中添加了metadata.user.user metadata.user.password eureka.instance.metadata-map.user.name${spring.security.user.name} eureka.instance.metadata-map.user.password${spr…

气象相关图表制作-字体图标、图片、折线的堆叠

开发工作中有个需要展示气温&#xff08;折线&#xff09;、天气&#xff08;图片&#xff09;、风羽&#xff08;字体图标&#xff09;的图表展示需求&#xff0c;之前用过highcharts的关于类似的chart&#xff0c;里面的风雨用的是自带的图片&#xff0c;但是现在要求风羽需要…

Windows环境本地部署开源在线演示文稿应用PPTist并实现远程访问

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

Linux双网卡默认路由的metric设置不正确,导致SSH连接失败问题定位

测试环境 VMware虚拟机 RockyLinux 9 x86_64 双网卡&#xff1a;eth0(访问外网): 10.206.216.92/24; eth1(访问内网) 192.168.1.4/24 问题描述 虚拟机重启后&#xff0c;SSH连接失败&#xff0c;提示"Connection time out"&#xff0c;重启之前SSH连接还是正常的…

基于Spring Boot医护人员排班系统

设计技术&#xff1a; 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringbootMybatisvue 工具&#xff1a;IDEA、Maven、Navicat 主要功能&#xff1a; 医护类型管理 医护人员排班系统的系统管理员可以对医护类型添加修改删除以及查询操作。具体界面…

SS8870T-3.6A 扫地机和滚刷电机的大电流电机驱动

扫地机器人已经成为现代家庭清洁的必备工具&#xff0c;而其中的关键部件——电机&#xff0c;对于其性能和用户体验起着至关重要的作用。为了确保扫地机器人的高效清洁和稳定运行&#xff0c;至少需要使用7个直流电机&#xff0c;包括行走轮、滚轮、边刷和吸尘等功能的驱动。 …

Python接口测试课程,每天学会一个Python小知识!

第一天: Python基础 Python简介、环境搭建及包管理 Python简介&#xff1a; 特点&#xff1a;Python是一门动态、解释型、强类型语言 动态&#xff1a;在运行期间才做数据检查&#xff08;不用提前声明变量&#xff09;- 静态语音(C/Java)&#xff1a;编译时检查数据类型&…

根据指定日期自定义el-date-picker日期选择器样式

需求 功能需要在DatePicker日期选择器中&#xff0c;对有数据的日期下方添加小圆点提示样式&#xff0c;后台会返回按年份查询的日期数据 dayjs插件 dayjs中文网&#xff1a;https://dayjs.fenxianglu.cn/ npm install dayjs实现点 配置picker-options对象中的cellClassName属性…

django 逆向生成对应数据库表的models模型类 —— python

一&#xff0c;在setting.py中配置好连接数据库的参数 在setting中的DATABASESZ中配置默认参数&#xff0c;并在INSTALLED_APPS中导入模块名。 DATABASES {default:{ENGINE: django.db.backends.mysql, # 数据库引擎NAME: jljupcs, # 数据库名称HOST: 127.0.0.1, # 数据库…

检索增强生成RAG系列1--RAG的实现

大模型出现涌现能力之后&#xff0c;针对大模型的应用也如雨后春笋般。但是&#xff0c;在大模型真正落地之前&#xff0c;其实还需要做好最后一公里&#xff0c;而这个最后一公里&#xff0c;其中不同应用有着不同的方法。其中prompt、微调和RAG都是其中方法之一。本系列就是针…

简单的同步压缩变换脊线检测(PythonMATLAB)

由于 Heisenberg 测不准原理&#xff0c;线性时频变换方法无法同时在时间和频率方向达到最佳的时频分布&#xff0c;窗函数和小波函数的选择也降低了各方法的自适应性。同样&#xff0c;二次型变换方法难以在去除交叉干扰项的同时保证较高的能量集中度。为了解决该问题&#xf…

MySQL的安装与配置

MySQL提供安装包和压缩包两种安装方式&#xff0c;安装包是以.msi作为后缀名的二进制分发文件&#xff0c;压缩包是以.zip为后缀的压缩文件。安装包的安装只要双击安装文件&#xff0c;然后按照提示一步步安装就可以了&#xff0c;属于“傻瓜”式安装&#xff1b;压缩包的安装需…

基于SpringBoot校园一卡通系统设计和实现(源码+LW+调试文档+讲解等)

&#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; Java精品实战案例《600套》 2023-2025年最值得选择的Java毕业设计选题大全&#xff1…

World of Warcraft [CLASSIC] Level 70 Riding Skill

World of Warcraft http://account.battlenet.com.cn-CSDN博客 World of Warcraft [CLASSIC] Level 70 Riding Skill 魔兽世界【怀旧】70级骑术 部落如何学习70级骑术&#xff0c;如何区影月谷&#xff0c;影月村&#xff0c;怀旧一下 荆棘谷 暮色森林 逆风小径 悲伤沼泽 诅…

变工况下转子、轴承数据采集及测试

1.固定工况下的数据采集 1.wireshark抓包 通过使用 Wireshark 抓包和 Linux 端口重放技术&#xff0c;可以模拟实际机械设备的运行环境&#xff0c;从而减少实地验证软件和算法的复杂性和麻烦。 打开设备正常运转&#xff0c;当采集器通过网口将数据发送到电脑时&#xff0c…

ubuntu 编译交叉环境arm 版本的openssl库

一&#xff0c;下载源码 [ Old Releases ] - /source/old/index.html 二&#xff0c;设置交叉编译环境 我的交叉环境是RV1126开发板&#xff0c;/home/rpdzkj/development/cross-compile-tools/rv1126/ 对应的是我电脑里的RV1126开发板的交叉环境下的gc g等路径存放 设置环境…

5. zabbix分布式监控

zabbix分布式监控 一、zabbix分布式监控二、zabbix分布式监控部署1、环境描述2、zabbix proxy的部署2.1 安装zabbix proxy相关的软件2.2 创建proxy需要的库、导入表2.3 编辑zabbix proxy配置文件&#xff0c;指定数据库连接2.4 启动zabbix proxy 3、在zabbix server添加代理4、…

数据结构与算法基础(王卓)--学习笔记

1 数据结构分类 1.1 逻辑结构分类 集合结构线性结构&#xff1a;线性表、栈、队列、串树形结构图形结构 1.2 物理结构分类 逻辑结构在计算机中的真正表示方式&#xff08;又称为映射&#xff09;称为物理结构&#xff0c;也可叫做存储结构 顺序存储结构&#xff1a;数组链…

高德地图获取key值步骤

1、创建新应用 进入控制台&#xff08;https://lbs.amap.com/dev/&#xff09;&#xff0c;创建一个新应用。 如果您之前已经创建过应用&#xff0c;可直接跳过这个步骤。 2、添加新Key 在创建的应用上分别填写key名称、选择服务平台、SHA1、以及PackageName SHA1:是在安卓…