排序之插入排序----直接插入排序和希尔排序(1)

 个人主页:C++忠实粉丝
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C++忠实粉丝 原创

排序之插入排序----直接插入排序和希尔排序(1)

收录于专栏【数据结构初阶
本专栏旨在分享学习数据结构学习的一点学习笔记,欢迎大家在评论区交流讨论💌

目录

1.排序的概念及其运用

1.1排序的概念

1.2排序运用 

1.2.1 购物和电商

1.2.2 图书馆和书店

1.2.3 教育

1.2.4 交通和物流

1.2.5 餐饮业

1.3 常见的排序算法 

2.插入排序

2.1基本思想

2.2直接插入排序

2.2.1直接插入排序的概念:

2.2.2直接插入排序示例:

2.2.3动图演示:

 2.2.4代码实现:

2.2.5测试代码:

2.2.6时间复杂度分析

2.3希尔排序 ( 缩小增量排序 )

2.3.1希尔排序的概念

2.3.2希尔排序图解分析:

2.3.3代码展示:

 2.3.4测试代码:

2.3.5希尔排序时间复杂分析:

2.3.6 希尔排序的特性总结:

2.4希尔排序与直接插入排序的关系和比较 

3总结 


1.排序的概念及其运用

1.1排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次 序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排 序算法是稳定的;否则称为不稳定的。

内部排序:数据元素全部放在内存中的排序。

外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不断地在内外存之间移动数据的排序。

1.2排序运用 

排序算法在生活中有着广泛的应用,无论是日常活动还是专业领域,都能看到排序算法的身影。以下是一些具体的例子:

1.2.1 购物和电商

  • 产品排列:在线购物平台会根据价格、销量、评价等对商品进行排序,方便用户查找和比较。
  • 推荐系统:根据用户的浏览和购买历史,推荐系统会对可能感兴趣的商品进行排序。

1.2.2 图书馆和书店

  • 分类与索引:图书按字母顺序、类别、作者或者出版日期排序,方便读者查找。
  • 借阅记录:按时间顺序记录借还书信息,便于管理和统计。

1.2.3 教育

  • 成绩排名:考试成绩会按照分数排序,以便评估学生的表现。
  • 学籍管理:按学号或姓名排序学生信息,便于查询和管理。

1.2.4 交通和物流

  • 航班和列车时刻表:按出发时间、目的地等排序,方便乘客查询和安排行程。
  • 快递分拣:按目的地、优先级等对包裹进行排序,提高运送效率。

1.2.5 餐饮业

  • 菜单排序:餐厅菜单按菜品类型、受欢迎程度等排序,方便顾客选择。
  • 订单处理:按下单时间、优先级等排序订单,确保及时准确地完成服务。

这些例子展示了排序算法在各种场景中的重要性和广泛应用,从而提高了效率和用户体验。无论是简单的字母排序还是复杂的多条件排序,排序算法在现代生活中都是不可或缺的工具。

1.3 常见的排序算法 

大家可以去下面链接查看各个排序算法的动态演示效果

--Comparison Sorting Visualization (usfca.edu) 

2.插入排序

2.1基本思想

直接插入排序是一种简单的插入排序法,其基本思想是: 把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。

实际中我们玩扑克牌时,就用了插入排序的思想

2.2直接插入排序

2.2.1直接插入排序的概念:

直接插入排序(Insertion Sort)是一种简单直观的排序算法,其基本思想是逐步构建有序序列。具体操作如下:

  1. 初始状态:将序列分为两部分,一部分是有序序列,初始时只包含第一个元素;另一部分是无序序列,包含剩余的元素。

  2. 排序过程

    • 从第二个元素开始,依次将该元素插入到前面已经排好序的序列中的合适位置。
    • 假设当前要插入的元素为 current_value,将 current_value 与已排序序列中的元素从后向前逐个比较。
    • 如果发现已排序元素比 current_value 大,则将该元素后移一位,直到找到比 current_value 小的位置,或者到达序列的开头。
    • 将 current_value 插入到找到的位置后,此时已排序序列长度增加一。
  3. 重复:重复以上步骤,直到所有元素都插入到有序序列中。

  4. 结束:当所有元素都插入到有序序列后,排序完成。

2.2.2直接插入排序示例:

假设要对数组 [5, 2, 4, 6, 1, 3] 进行直接插入排序:

  1. 初始时,有序序列为 [5],无序序列为 [2, 4, 6, 1, 3]
  2. 将 2 插入到 [5] 中,得到 [2, 5],无序序列变为 [4, 6, 1, 3]
  3. 将 4 插入到 [2, 5] 中,得到 [2, 4, 5],无序序列变为 [6, 1, 3]
  4. 依此类推,直到所有元素都插入到有序序列中,最终得到排序后的数组 [1, 2, 3, 4, 5, 6]

直接插入排序虽然简单,但在某些特定情况下仍然可以提供不错的性能,特别是在处理部分有序的数据或者数据量较小时。

2.2.3动图演示:

 2.2.4代码实现:

void InsertSort(int* a, int n)
{//  [0, n-1]for (int i = 0; i < n - 1; i++){// [0, n-2]是最后一组// [0,end]有序 end+1位置的值插入[0,end],保持有序int end = i;int tmp = a[end + 1];while (end >= 0){if (tmp < a[end]){a[end + 1] = a[end];--end;}else{break;}}a[end + 1] = tmp;}
}

分析:

  1. 外层循环(i 循环)

    • for (int i = 0; i < n - 1; i++) 循环遍历数组,从第一个元素到倒数第二个元素。每次迭代开始时,数组从 a[0] 到 a[i] 是已经排好序的部分。
  2. 内层循环(end 循环)

    • int end = i; 将当前元素 a[i+1] 视为待插入的元素。
    • int tmp = a[end + 1]; 记录待插入元素的值。
  3. 插入过程

    • while (end >= 0) 内层循环用于找到待插入元素 tmp 的正确位置。
    • if (tmp < a[end]) 如果待插入元素比当前位置 a[end] 的元素小,则将 a[end] 向后移动一位,即 a[end + 1] = a[end];,同时 end-- 继续向前比较。
    • 当找到合适的位置(即 tmp >= a[end]),退出内层循环。
  4. 插入操作

    • a[end + 1] = tmp; 将 tmp 插入到找到的合适位置 end + 1 处,此时数组从 a[0] 到 a[i+1] 又变成有序状态。

 注意:我们的外层循环for (int i = 0; i < n - 1; i++) 是遍历的是我们已经排好序的数组,我们需要排的数为a[end+1],也就是a[i+1],所以这里i<n-1,不能等于n-1

2.2.5测试代码:

测试链接:912. 排序数组 - 力扣(LeetCode)

题目描述:

给你一个整数数组 nums,请你将该数组升序排列。

示例 1:

输入:nums = [5,2,3,1]
输出:[1,2,3,5]

示例 2:

输入:nums = [5,1,1,2,0,0]
输出:[0,0,1,1,2,5]

提示:

  • 1 <= nums.length <= 5 * 104
  • -5 * 104 <= nums[i] <= 5 * 104

代码展示:

void InsertSort(int* a, int n)
{for(int i = 0; i < n-1; i++){int end = i;int tmp = a[end + 1];while(end >= 0){if(a[end] > tmp){a[end + 1] = a[end];end--;}else{break;}}a[end + 1] = tmp;}
}int* sortArray(int* nums, int numsSize, int* returnSize) {(*returnSize) = numsSize;int* array = (int*)malloc(sizeof(int)*(*returnSize));for(int i = 0; i < numsSize; i++){array[i] = nums[i];}InsertSort(array, numsSize);return array;
}

2.2.6时间复杂度分析

 插入排序可以说是排序的最底层,它最好的情况是有序,时间复杂度为O(n),很显然这种情况很少见,最坏的情况是逆序,时间复杂度为O(n^2).在平均情况下,直接插入排序的时间复杂度也是 O(n^2)。虽然有时候可能会比较少于最坏情况下的比较次数,但是对于大规模的随机数组,其平均时间复杂度仍然是二次阶的。

在力扣这道题目中只通过了12个例子就超时了.....

 

直接插入排序的特性总结:

1. 元素集合越接近有序,直接插入排序算法的时间效率越高

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1),它是一种稳定的排序算法

4. 稳定性:稳定

2.3希尔排序 ( 缩小增量排序 )

2.3.1希尔排序的概念

希尔排序(Shell Sort)是一种改进的插入排序算法,也称作缩小增量排序。希尔排序通过将原始序列分割成若干个子序列来改善插入排序的性能,每个子序列分别进行插入排序,最后再对整体进行一次插入排序。其基本思想可以描述如下:

  1. 步骤

    • 选择一个增量序列,通常是使用 Knuth 序列(例如 ( n / 2, n / 4, ..., 1 ))或者 Hibbard 序列(( 2^k - 1 ))来作为增量。
    • 根据选定的增量序列,将待排序的序列分割成若干个子序列。
    • 对每个子序列分别进行插入排序。
    • 逐渐缩小增量,重复以上步骤,直到增量为 1。
  2. 排序过程

    • 假设待排序数组为 [5, 2, 4, 6, 1, 3]
    • 如果选取增量序列为 ( n / 2, n / 4, ..., 1 ),则初始增量 ( n / 2 = 3 )。
    • 分别对 [5, 6][2, 1][4, 3] 这三个子序列进行插入排序。
    • 第一次插入排序后,可能得到 [1, 2, 3, 5, 4, 6]
    • 接下来使用更小的增量进行插入排序,直到最终使用增量为 1 的插入排序完成整体排序。

2.3.2希尔排序图解分析:

 

2.3.3代码展示:

void ShellSort(int* a, int n)
{int gap = n;while (gap > 1){// +1保证最后一个gap一定是1// gap > 1时是预排序// gap == 1时是插入排序gap = gap / 3 + 1;for (size_t i = 0; i < n - gap; ++i){int end = i;int tmp = a[end + gap];while (end >= 0){if (tmp < a[end]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}}
}

代码逻辑:

  1. 初始设置 gap

    • 初始时,将 gap 设置为数组长度 n。在每一轮迭代中,通过 gap = gap / 3 + 1 逐渐减小 gap 的值,直到最后一次迭代时 gap 等于 1,变成普通的插入排序。
  2. 主循环(while 循环):

    • 当 gap 大于 1 时,进行希尔排序的预处理阶段,即根据当前的 gap 进行分组预排序。
    • 当 gap 等于 1 时,执行最后一轮,此时相当于执行普通的插入排序。
  3. 预排序阶段

    • 对于每个 gap 值,通过一个 for 循环遍历数组,对每个分组进行插入排序。这里的 for (size_t i = 0; i < n - gap; ++i) 控制每个分组的起始位置。
  4. 插入排序

    • 对于当前的分组起始位置 i,使用插入排序的方式将该分组内的元素排序。
    • 内部的 while 循环用于找到合适的插入位置,确保当前位置的元素插入到正确的位置。
  5. 交换和移动

    • 如果当前位置的元素比 tmp(待插入元素)大,则将当前位置的元素向后移动 gap 个位置,直到找到合适的插入位置。
    • 插入位置确定后,将 tmp 插入到该位置。
  6. 最终结果

    • 经过多次循环和逐步缩小的 gap 值处理后,数组 a 将被排序完成。

 2.3.4测试代码:

 测试链接:912. 排序数组 - 力扣(LeetCode)

代码展示:

void ShellSort(int* a, int n)
{int gap = n;while(gap > 1){gap = gap/3 + 1;for(int i = 0; i < n - gap; i++){int end = i;int tmp = a[end + gap];while(end >= 0){if(tmp < a[end]){a[end + gap] = a[end];end-=gap;}else{break;}}a[end + gap] = tmp;}}
}int* sortArray(int* nums, int numsSize, int* returnSize) {(*returnSize) = numsSize;int* array = (int*)malloc(sizeof(int)*(*returnSize));for(int i = 0; i < numsSize; i++){array[i] = nums[i];}ShellSort(array, numsSize);return array;
}

结果展示:

居然过了!!!!!!!!!!

 

希尔排序虽然有点难理解,看起来很复杂,但是它的效率真的很高.

2.3.5希尔排序时间复杂分析:

 有关希尔排序的时间复杂度至今都没有定论.

《数据结构(C语言版)》--- 严蔚敏

《数据结构-用面相对象方法与C++描述》--- 殷人昆 

因为我的gap是按照Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,我们暂时就按照:O(n^1.3)来算

那为什么希尔排序的时间复杂难算呢?

第一次预排序 gap = n/3(这里我们将-1省略方便计算),一组有3个数据(n=10),最坏的情况需要排3次,也就是3*3/n=n,也就是说,希尔第一次预排序接近于O(n)

最后一次排序:数组接近有序,可以看成O(n)

第二次预排序:gap=n/9,每组九个数据,最坏的情况(1+2.....+8)*n/9=4n

注意:这里我们第二次预排序取得是最坏的情况,而经过我们第一次得预排序,我们第二次往往不会是最坏的情况,希尔排序难就难在除第一次和最后一次,其他情况是变化的

2.3.6 希尔排序的特性总结:

1. 希尔排序是对直接插入排序的优化。

2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就 会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。

3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的 希尔排序的时间复杂度都不固定:

2.4希尔排序与直接插入排序的关系和比较 

关系与比较:

  1. 基础原理: 希尔排序可以看作是对直接插入排序的改进,通过预处理数据,使其更接近最终排序后的位置,从而减少了直接插入排序中的元素比较和移动次数。

  2. 性能比较: 在数据量较小时,直接插入排序可能会比希尔排序更快,因为希尔排序的预处理阶段可能带来一定的额外开销。但是在大规模数据和随机数据排序时,希尔排序通常能够明显优于直接插入排序。

  3. 稳定性: 直接插入排序是稳定的,而希尔排序一般来说是不稳定的,这是因为希尔排序涉及多个子序列的插入排序,子序列之间的相对顺序可能发生变化。

综上所述,希尔排序和直接插入排序虽然在实现上有所区别,但它们的基本思想都是通过逐步将元素移动到正确位置来完成排序,希尔排序通过增量序列的方式优化了插入排序的性能,特别是在处理大规模数据时表现更为优越。

3总结 

直接插入排序和希尔排序虽然在我们排序中使用较少,但它们具有可使用性,尤其是希尔排序(从它AC力扣的数组排序就可以看出)

我马上会更选择排序--(选择排序和推排序)

宝子们记得点赞关注支持一下

我将会在数据结构初阶这个专栏持续更新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/35166.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图形编辑器基于Paper.js教程04: Paper.js中的基础知识

背景 了解paper.js的基础知识&#xff0c;在往后的开发过程中会让你如履平地。 基础知识 paper.js 提供了两种编写方式&#xff0c;一种是纯粹的JavaScript编写&#xff0c;还有一种是使用官方提供的PaperScript。 区别就是在于&#xff0c;调用paper下的字对象是否需要加pa…

Windows server 由于没有远程桌面授权服务器可以提供许可证,远程会话连接已断开。

问题现象&#xff1a; 解决办法 临时远程方式1: 打开 mstsc 时带上 /admin 等参数&#xff0c;如下图所示&#xff1a; 使用“mstsc /admin /v:目标ip”来强制登录服务器&#xff0c;但只能是管理员身份。 远程方式2&#xff1a; 通过VM远程登陆系统后&#xff0c;运行输入R…

Python编程编辑器PyCharm 界面介绍

PyCharm 界面介绍 当你打开 PyCharm 后&#xff0c;会看到以下主要界面区域&#xff1a; 1&#xff09;菜单栏&#xff1a; 位于界面最顶端&#xff0c;包含文件&#xff08;File&#xff09;、编辑&#xff08;Edit&#xff09;、查看&#xff08;View&#xff09;、导航&a…

ICMAN液位检测——WS003B管道检测模组

ICMAN液位检测之WS003B管道检测模组 体积小&#xff0c;成本低&#xff0c; 液位检测精度高&#xff0c; 有水输出低电平无水高电平&#xff0c; 适用于饮水机、咖啡机、扫地机器人、洗地机等&#xff0c; 有需要朋友快联系我吧&#xff01; AWE展会不容错过的ICMAN检测模组…

RabbitMQ实践——搭建多人聊天服务

大纲 用户登录创建聊天室监听Stream&#xff08;聊天室&#xff09;发送消息实验登录Tom侧Jerry侧 创建聊天室Jerry侧Tom侧 进入聊天室Jerry侧Tom侧 发送消息Jerry发送消息Jerry侧聊天室Tom侧聊天室 Tom发送消息Jerry侧聊天室Tom侧聊天室 代码工程参考资料 在《RabbitMQ实践——…

Webpack: 前端资深构建工具

概述 如果你是一名前端工程师&#xff0c;相信之前或多或少听过、用过 Webpack 这一构建工具&#xff0c;它能够融合多种工程化工具&#xff0c;将开发阶段的应用代码编译、打包成适合网络分发、客户端运行的应用产物如今&#xff0c;Webpack 已经深深渗入到前端工程的方方面面…

简单了解IoC

IoC 什么是IoC&#xff1f; IoC&#xff08;Inversion of Control&#xff09;&#xff0c;即控制反转&#xff0c;这是一种设计思想&#xff0c;在Spring指将对象的控制权交给Spring容器&#xff0c;由容器来实现对象的创建、管理&#xff0c;程序员只需要从容器获取想要的对…

java设计模式(四)原型模式(Prototype Pattern)

1、模式介绍&#xff1a; 原型模式&#xff08;Prototype Pattern&#xff09;是一种创建型设计模式&#xff0c;它允许对象在创建新实例时通过复制现有实例而不是通过实例化新对象来完成。这样做可以避免耗费大量的资源和时间来初始化对象。原型模式涉及一个被复制的原型对象…

ES6模板字符串详解

ES6是JavaScript语言的一次重大更新&#xff0c;引入了许多新特性和语法改进&#xff0c;其中模板字符串是一个非常实用和灵活的语法特性。它可以让我们从数组或对象中提取值&#xff0c;并赋给对应的变量&#xff0c;让代码变得更加简洁和易读。 本文将深入探讨ES6解构赋值的语…

Nginx开发--动静分离和URLRewrite

05 【动静分离和URLRewrite】 1.动静分离介绍 为了提高网站的响应速度&#xff0c;减轻程序服务器&#xff08;Tomcat&#xff0c;Jboss等&#xff09;的负载&#xff0c;对于静态资源&#xff0c;如图片、js、css等文件&#xff0c;可以在反向代理服务器中进行缓存&#xff…

减少液氮罐内液氮损耗的方法

监测与管理液氮容器的密封性能 液氮容器的密封性能直接影响液氮的损耗情况。一个常见的损耗源是容器本身的密封不良或老化导致的泄漏。为了有效减少液氮损耗&#xff0c;首先应当定期检查液氮容器的密封性能。这可以通过简单的方法如肉眼检查外观&#xff0c;或者更精确的方法…

xxl-job 分布式任务调度 基本使用

xxl-job 是一个分布式任务调度平台&#xff0c;使用非常方便。 官网&#xff1a;https://gitee.com/xuxueli0323/xxl-job 工作原理类似于nacos 执行器注册到调度中心 调度中心分配任务 执行器执行任务 docker-compose 配置 version: 3 services:xxl-job:image: xuxueli/xxl-…

科普文:外贸垃圾邮件判定

国外垃圾邮件判定规则 很多时候&#xff0c;外贸的沟通多以邮件为主&#xff0c;他们作为专业的采购商&#xff0c;每天邮箱里都会塞满了邮件。因此&#xff0c;为了提高工作效率&#xff0c;很多国外客户喜欢使用垃圾邮件过滤器来过滤掉一部分垃圾邮件。 以下几种情况会触发垃…

《重构》读书笔记【第1章 重构,第一个示例,第2章 重构原则】

文章目录 第1章 重构&#xff0c;第一个示例1.1 重构前1.2 重构后 第2章 重构原则2.1 何谓重构2.2 两顶帽子2.3 为何重构2.4 何时重构2.5 重构和开发过程 第1章 重构&#xff0c;第一个示例 我这里使用的IDE是IntelliJ IDEA 1.1 重构前 plays.js export const plays {&quo…

AcWing算法基础课笔记——高斯消元

高斯消元 用来求解方程组 a 11 x 1 a 12 x 2 ⋯ a 1 n x n b 1 a 21 x 1 a 22 x 2 ⋯ a 2 n x n b 2 … a n 1 x 1 a n 2 x 2 ⋯ a n n x n b n a_{11} x_1 a_{12} x_2 \dots a_{1n} x_n b_1\\ a_{21} x_1 a_{22} x_2 \dots a_{2n} x_n b_2\\ \dots \\ a…

论文导读 | Manufacturing Service Operations Management近期文章精选

编者按 在本系列文章中&#xff0c;我们梳理了顶刊Manufacturing & Service Operations Management5月份发布有关OR/OM以及相关应用的文章之基本信息&#xff0c;旨在帮助读者快速洞察行业/学界最新动态。 推荐文章1 ● 题目&#xff1a;Robust Drone Delivery with Weath…

【C++题解】1712. 输出满足条件的整数2

问题&#xff1a;1712. 输出满足条件的整数2 类型&#xff1a;简单循环 题目描述&#xff1a; 有这样的三位数&#xff0c;其百位、十位、个位的数字之和为偶数&#xff0c;且百位大于十位&#xff0c;十位大于个位&#xff0c;请输出满所有满足条件的整数。 输入&#xff1…

#05搜索法

要点&#xff1a; ①搜索法&#xff1a;穷举搜索、深度优先搜索、广度优先搜索、广深结合搜索、回溯法、分支限界法&#xff1b; ②解空间树&#xff1a;子集树、排列树、满m叉树。 ③回溯法及分支限界法求解问题的方法与步骤。 难点&#xff1a; 子集树、排列树和满m叉树…

小程序下拉刷新,加载更多数据,移动端分页

文章目录 页面结构图WXML页面代码js代码wxss代码总结备注 参考&#xff1a;https://juejin.cn/post/7222855604406796346 页面结构图 一般页面就4个结构&#xff1a;最外滚动层、数据展示层、暂无数据层、没有更多数据层。 如图&#xff1a; WXML页面代码 <scroll-view …

Golang | Leetcode Golang题解之第191题位1的个数

题目&#xff1a; 题解&#xff1a; func hammingWeight(num uint32) (ones int) {for ; num > 0; num & num - 1 {ones}return }