车辆数据的提取、定位和融合 精确车辆定位(其三.一 共十二篇)随机复合

第一篇: System Introduction

第二篇:State of the Art

第三篇:localization

第四篇:Submapping and temporal weighting

第五篇:Mapping of Point-shaped landmark data

第六篇:Clustering of landmark data

第七篇:fusion of point-shaped landmark data

第八篇:fusion of complex landmark data

第九篇:fusion of areal data

第十篇:instaniation at the vehicle and backend sid 

第十一篇:future work

第十二篇:Mathematical Nomenclature

对象之间关系序列进行随机复合

CVD地理参考,通过将车辆位置和相对于车辆给出的观测位置复合,将感知到的观测值引用到全局坐标系时,车辆定位的测量误差会累积。这需要一种方法来估计观测值相对于全球框架的位置,包括评估其质量。本篇采用一种现有的对对象之间关系序列进行随机复合的方法,该方法产生地理参考位置的均值和协方差。

精确的车辆定位

精确的车辆定位和捕获车辆轨迹对于CVD的准确参考及其随后的融合至关重要。车辆通常通过基于卫星的方法进行定位。然而,众所周知,基于卫星的精确车辆定位具有挑战性,因为多个误差源会降低定位质量。电离层、不精确星历表和漂移卫星钟,它们主要分别产生4.0米的误差和2.1米的误差,可以看作是主要的误差源。此外,通过构思反射信号和延迟信号而产生的多径效应可能导致(特别是在(城市峡谷中)进一步的定位误差约为 1.4 m。当总结这些误差源时,包括接收机的不精确性,总误差为 10.8 m的结果。对于协作构建高精度地图的用例,这显然是不够的。

以下是将提供的误差源及其对GPS和DGPS星历表的影响整理成的表格形式:

误差源GPS影响 (米)DGPS影响 (米)
卫星时钟2.10.1
电离层4.00.2
对流层0.70.2
多路径1.41.4
接收器0.50.5
Σ 总计10.82.5

请注意,DGPS(差分全球定位系统)通过比较一个或多个已知位置的接收器的测量值来消除或显著减少许多类型的误差(如卫星时钟误差、电离层和对流层误差),因此其误差通常远小于常规GPS。然而,多路径误差和接收器误差通常是与接收器本身及其环境相关的,因此DGPS可能无法显著减少这些误差。

应对测量误差的一个有用信息是车辆可以执行的受限运动类型。像SLAM方法将用于融合点形/复杂的地标数据,它结合了车辆运动模型。过去已经提出了几种运动模型。使用线性与圆形车辆运动模型的优缺点将会详细阐述。

全局坐标系

CVD地理参考的另一个方面是,通过将车辆位置和相对于车辆给出的观测位置复合,将感知到的观测值引用到全局坐标系时,车辆定位的测量误差会累积。这需要一种方法来估计观测值相对于全球框架的位置,包括评估其质量。

例子:在计算机视觉和自动驾驶系统中,使用相机、激光雷达(LiDAR)或其他传感器进行环境感知时,将观测到的数据(如目标位置、障碍物等)从车辆局部坐标系转换到全局坐标系(如地理坐标系)是一个重要步骤。这个过程中,车辆自身的定位精度会直接影响到观测值在全局坐标系中的位置精度。

此时通过DGPS可以减轻许多这些误差,例如不精确的星历表、漂移卫星时钟和电离层/对流层误差,从而产生大约2.5米的整体定位误差。然而,DGPS是以校正数据为基础的,这些数据通常来自地面参考站网络,并且需要在处理之前传播到车辆侧。对于校正数据的大规模传播,蜂窝网络是注定的。然而,众所周知,蜂窝网络会出现白点,从而阻止通过DGPS实现无间隙的精确车辆定位。

因此,目前的研究主要集中在其他渠道向车辆侧提供校正数据的适用性上。例如,DAB的数据通道已被确定为一种有前途的替代方案。但是,DAB网络受到与蜂窝网络类似的覆盖限制的影响。理想的解决方案有望在全球范围内发挥作用,提供(接近)大地测量级的定位精度,并且对普通车辆具有商业可行性。

处理链中克服这些问题的方法是离线处理。GNSS原始数据由车辆传播到后端,作为采集的CVD的一部分。在后端,接收到的GNSS原始数据在考虑GNSS校正数据的情况下进行后处理。这种方法有两个关键的好处。首先,影响校正数据在线可用性的蜂窝白点现在可以被认为是没有问题的。其次,通过后处理,可以实现更精确的定位,因为可以一次检查整个轨迹,并且可以通过这种方式更恰当地解决歧义。

多点定位

多点定位从测量信号中产生位置坐标。通过对以适当采样率进行的一系列测量应用多点测量,可以立即在线获得车辆轨迹。

多点测量决定了GNSS接收机与多颗GNSS卫星之间的距离,即所谓的伪距φipr,∆tq,i“1,......n, n 卫星数量,SI表示第i个卫星位置,是接收器的位置,C表示光速,∆表示卫星和接收器时钟之间的差值。

通常,非线性伪距方程通过一阶泰勒级数线性化,以便以有效的方式求解它,例如通过 QR5。

如果必须在三维空间中确定接收器的位置 r,则至少需要四个卫星观测 si,因为还需要解析接收器和卫星时钟之间的时差∆。生成的系统。

IGS 提供的不同轨道和时钟产品根据其精度、延迟和采样率与广播产品相反。在三维情况下,接收器的绝对位置 r 的方程由下式给出。

φmeas。 i 表示 GNSS 接收机测量的伪距。方程组被允许被过度确定。这在同时观测到四颗以上卫星的情况中是相关的。线性化方程组的解可以以有效和稳健的方式确定,例如,通过QR。有关详细信息,请参阅 Kaplan 和 Hegarty。

在实践中,基于GNSS的定位的在线解决方案通过整合有限数量的先前测量值而变得强大。为此,通常使用滤波技术,例如(E)KF6。这些方法的一个组成部分是运动模型。车辆运动建模的各个方面将是本节的主题。

如前所述,离线处理方法的第一步是将GNSS原始数据从车辆传输到后端,作为获取的CVD的一部分。在后端,接收到的GNSS原始数据在考虑GNSS校正数据的情况下进行后处理。提供了 GNSS 离线处理方法的顶层视图。其核心是具有以下接口的后处理过程。

后处理采用所谓的PPP,该PPP7在最近十年中出现,用于基于GNSS的精确定位,并且被认为非常适合对GNSS原始数据进行后处理。基于PPP的GNSS定位同时考虑了GNSS代码和相位测量,并且确实使用精确的星历表和时钟,而不是卫星广播的星历表和时钟[65]。这两项调整都旨在显著提高定位的准确性和鲁棒性。例如,精确的星历表和时钟可以从IGS8获得,IGS8从全球分布的参考站网络中获得它们。通过使用精确的卫星星历表和时钟代替广播星历表和时钟,总体定位误差可以减少约4.2米。上图概述了 IGS 提供的不同产品,以及相应的精度和延迟。IGS提供潜伏期约为3-9 h的超快速校正数据,12-18 d后提供最终校正数据。后处理根据原始数据流和校正数据的子序列确定系统状态流,并可选择由 egomotion 数据支持,以补偿潜在的中断和错误。它是通过对原始数据流和校正数据的子序列进行过滤来执行的。过滤可以向前、向后和组合方式应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/34990.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

礼让,不是一昧地退让,而是表达我们的素养、品德

礼 / 让,发心是文明相处,互助互让,是君子之交

覆盖容器的默认设置

覆盖容器都默认设置 目录 覆盖网络端口设置环境变量限制容器资源使用试一试 运行多个 Postgres 数据库实例在受控网络中运行 Postgres 容器管理资源在 Docker Compose 中覆盖默认的 CMD 和 ENTRYPOINT使用 docker run 覆盖默认的 CMD 和 ENTRYPOINT 额外资源下一步 当 Docker…

UnityShader SDF有向距离场简单实现

UnityShader SDF有向距离场简单实现 前言项目场景布置连连看画一个圆复制一个圆计算修改shader参数 鸣谢 前言 突然看到B站的一个教程,还不错,记录一下 项目 场景布置 使用ASE连连看,所以先要导入Amplify Shader Editor 连连看 画一个…

面试-JMM的内存可见性

1.JAVA内存模型 分析: 由于JVM运行程序的实体是线程,而每个线程创建时,JVM都会 为其创建一个工作内存(栈空间),用于存储线程私有的数据。而java内存模型中规定所有变量都存储在主内存中。主内存是共享内存区域,所有线程都可以访问…

Python-PDF文件密码破解小工具

背景 经常从网络上下载的PDF笔记被加了密,在自己学习的过程中想要添加书签却因为没有密码无法添加,所以通过Python实现一个解密小工具,亲测大多数密码都可以破解。 代码 import os import tkinter as tk from tkinter import filedialog #…

你还不知道Modbus RTU???

1. 什么是Modbus RTU Modbus RTU(Remote Terminal Unit)是Modbus通信协议的一种变种,用于串行通信。它是一种常见的工业控制系统通信协议,通常用于采集传感器数据、控制执行器和监控设备状态。Modbus RTU采用二进制编码&#xff0…

基于ruoyi-app的手机短信登录(uniapp)

本篇用于记录h5的框架搭建 组件地址:短信验证码登陆&#xff0c;手机号&#xff0c;验证码倒计时 - DCloud 插件市场 调整后的表单组件代码: <template><view class"login-view"><!-- <input type"tel" confirm-type"确认"…

073、类的三大特征初识

&#xff08;1&#xff09;继承 类之间可以通过继承建立父子关系&#xff0c;子类可以继承父类的属性和方法&#xff0c;并可以添加自己的特定属性和方法。如下是一个简单示例&#xff1a; class Student(Person):def __init__(self, name, age, student_id):super().__init_…

Follow Carl To Grow|【LeetCode】93.复原IP地址,78.子集,90.子集II

【LeetCode】93.复原IP地址 题意&#xff1a;有效 IP 地址 正好由四个整数&#xff08;每个整数位于 0 到 255 之间组成&#xff0c;且不能含有前导 0&#xff09;&#xff0c;整数之间用 ‘.’ 分隔。 例如&#xff1a;“0.1.2.201” 和 “192.168.1.1” 是 有效 IP 地址&…

【深度学习】实现基于MNIST数据集的TensorFlow/Keras深度学习案例

基于TensorFlow/Keras的深度学习案例 实现基于MNIST数据集的TensorFlow/Keras深度学习案例0. 什么是深度学习&#xff1f;1. TensorFlow简介2. Keras简介3. 安装TensorFlow前的注意事项4. 安装Anaconda3及搭建TensorFlow环境1&#xff09; 下载安装Anaconda Navigator2&#xf…

go语言day06 数组 切片

数组 : 定长且元素类型一致,在索引逻辑上连续存储,数组的内存地址是存储的第一个元素的内存地址 几种创建方式: 仅声明 var nums [ 3 ] int 声明并赋值 var nums [ 2 ] string {"武沛齐","alex"} 声明并按下标赋值 var nums [ 3 ] int {0:88,2:1 } 省略…

ffmpeg+nginx+video实现rtsp流转hls流,web页面播放

项目场景&#xff1a; 最近调试海康摄像头需要将rtsp流在html页面播放,因为不想去折腾推拉流&#xff0c;所以我选择ffmpeg转hls流&#xff0c;nginx转发&#xff0c;html直接访问就好了 1.首先要下载nginx和ffmpeg 附上下载地址&#xff1a; nginx nginx news ffmpeg htt…

HttpServletRequest・getContentLeng・getContentType区别

getContentLength()&#xff1a; 获取客户端发送到服务器的HTTP请求主体内容的字节数&#xff08;长度&#xff09; 如果请求没有正文内容&#xff08;如GET&#xff09;&#xff0c;或者请求头中没有包含Content-Length字段&#xff0c;则该方法返回 -1 getContentType()&am…

eclipse中svn从分支合并到主干及冲突解决

1、将分支先commit&#xff0c;然后再update&#xff0c;然后再clean一下&#xff0c;将项目多余的target都清理掉。 2、将branches切换到trunk 3、工程上右键-》Team-》合并&#xff08;或Merge&#xff09; 4、默认选项&#xff0c;点击Next 5、有未提交的改动&#xff0c;…

文献阅读:通过双线性建模来破译神经元类型连接的遗传密码

文献介绍 文献题目 Deciphering the genetic code of neuronal type connectivity through bilinear modeling 研究团队 Mu Qiao&#xff08;美国加州理工学院&#xff09; 发表时间 2024-06-10 发表期刊 eLife 影响因子 7.7 DOI 10.7554/eLife.91532.3 摘要 了解不同神经元…

打造爆款秘籍:阿里巴巴国际站测评补单优势全攻略

在阿里巴巴国际站&#xff0c;买家复购率和其他销售指标是衡量产品市场潜力和销售成功与否的关键指标。当系统评估出产品具有巨大的市场潜力时&#xff0c;它会相应地增加对产品的流量支持&#xff1b;反之&#xff0c;如果潜力不足&#xff0c;产品的排名将会受到影响&#xf…

Node官网下载各个版本

node官网下载各个版本地址 例如 14.16.0 Index of /download/release/v14.16.0/

使用 Spring Boot 3.x 与图形学技术,添加电子印章防伪特征

使用 Spring Boot 3.x 与图形学技术,添加电子印章防伪特征 在电子办公和无纸化办公日益普及的今天,电子印章的使用越来越广泛。然而,如何确保电子印章的安全性和防伪能力成为了一个亟待解决的问题。本文将通过 Spring Boot 3.x 和图形学技术,深入探讨如何为电子印章添加防…

Redis-实战篇-什么是缓存-添加redis缓存

文章目录 1、什么是缓存2、添加商户缓存3、前端接口4、ShopController.java5、ShopServiceImpl.java6、RedisConstants.java7、查看Redis Desktop Manager 1、什么是缓存 缓存就是数据交换的缓冲区&#xff08;称为Cache&#xff09;&#xff0c;是存贮数据的临时地方&#xff…

MATLAB--矩阵()

文章目录 前言概念矩阵构造 前言 MATLAB作为数学软件计算软件&#xff0c;对于数学运算的性能十分优越&#xff0c;本文作为MATLAB记录关于在MATLAB中关于矩阵的知识。如有错误&#xff0c;还望指正。 概念 在数学上矩阵的定义&#xff1a;由m*n个aij(i1,2…… ,m;j1,2……,…