动手学深度学习(Pytorch版)代码实践 -卷积神经网络-27含并行连结的网络GoogLeNet

27含并行连结的网络GoogLeNet

在这里插入图片描述
在这里插入图片描述

import torch
from torch import nn
from torch.nn import functional as F
import liliPytorch as lp
import matplotlib.pyplot as pltclass Inception(nn.Module):# c1--c4是每条路径的输出通道数def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):super().__init__()# super(Inception, self).__init__(**kwargs)# 线路1,单1x1卷积层self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)# 线路2,1x1卷积层后接3x3卷积层self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)# 线路3,1x1卷积层后接5x5卷积层self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)# 线路4,3x3最大汇聚层后接1x1卷积层self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)def forward(self, x):# 经过每条路径,并应用 ReLU 激活函数p1 = F.relu(self.p1_1(x))p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 = F.relu(self.p4_2(self.p4_1(x)))# 在通道维度上连结输出return torch.cat((p1, p2, p3, p4), dim=1)# 定义模型的各个模块
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), # 第一个卷积层nn.ReLU(),                                            # 激活函数nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),                     # 1x1卷积层nn.ReLU(),                                            # 激活函数nn.Conv2d(64, 192, kernel_size=3, padding=1),         # 3x3卷积层nn.ReLU(),                                            # 激活函数nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),          # 第一个Inception块Inception(256, 128, (128, 192), (32, 96), 64),        # 第二个Inception块nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),         # 第一个Inception块Inception(512, 160, (112, 224), (24, 64), 64),        # 第二个Inception块Inception(512, 128, (128, 256), (24, 64), 64),        # 第三个Inception块Inception(512, 112, (144, 288), (32, 64), 64),        # 第四个Inception块Inception(528, 256, (160, 320), (32, 128), 128),      # 第五个Inception块nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),      # 第一个Inception块Inception(832, 384, (192, 384), (48, 128), 128),      # 第二个Inception块nn.AdaptiveAvgPool2d((1, 1)),                         # 自适应平均汇聚层nn.Flatten()                                          # 展平层
)# 将所有模块串联成一个完整的模型
net = nn.Sequential(b1,      # 第一模块b2,      # 第二模块b3,      # 第三模块b4,      # 第四模块b5,      # 第五模块nn.Linear(1024, 10)  # 最后一层全连接层,输出10个类别
)# 创建一个随机输入张量,并通过每一层,打印输出形状
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)# 训练参数
lr, num_epochs, batch_size = 0.1, 10, 128
# 加载数据集
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size, resize=96)
# 训练模型
lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
# 显示训练过程中的图表
plt.show()# 训练结果:
# 损失 0.254, 训练准确率 0.904, 测试准确率 0.866
# 1534.2 examples/sec on cuda:0# loss 0.246, train acc 0.906, test acc 0.891
# 1492.9 examples/sec on cuda:0

运行效果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/34226.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【kaggle数据集无法下载解决办法】

kaggle数据集无法下载的解决办法 当我们在做机器学习相关问题的时候,需要到kaggle网站上下载数据集,但是很多时候速度很慢或者连接超时等问题,此时解决办法如下: 在本地安装Kaggle API包 打开终端输入如下指令: pip i…

vscode使用内置插件断点调试vue2项目

1、首先项目中要开启source-map 在vue.config.js 文件中 module.exports {configureWebpack: {devtool: process.env.NODE_ENV ! "production" ? "source-map" : ,} }2、项目根目录新建.vscode/launch.js文件 {"configurations": [{"ty…

解析JavaScript中逻辑运算符和||的返回值机制

本文主要内容:了解逻辑运算符 &&(逻辑与)和 ||(逻辑或)的返回值。 在JavaScript中,逻辑运算符 &&(逻辑与)和 ||(逻辑或)的返回值可能并不总…

浏览器提升编译速度小技巧(一)- 防病毒排除

1.引言 在Chrome开发过程中,编译速度是影响开发效率的关键因素之一。编译一个大型项目如Chrome,往往需要处理大量的代码文件和依赖库,这个过程既复杂又耗时。因此,任何能够提升编译速度的技巧,都能显著提高开发效率&a…

Dubbo本地调试解决方案

有三种方式:原文链接 本文尝试使用了原作者推荐的第二种方式,在启动本地的服务时加入全局版本号的参数 -Ddubbo.service.versiontest同时需要修改消费者侧API的版本号。 DubboReference(version "test")private IContentPortraitService contentPortra…

Python-题库篇-基础

文章目录 Python-题库篇-基础题目001: 在Python中如何实现单例模式。题目002:不使用中间变量,交换两个变量a和b的值。题目003:写一个删除列表中重复元素的函数,要求去重后元素相对位置保持不变。题目004:假设你使用的是…

CentOS7.6安装RabbitMQ

前言:因为RabbitMQ是ERlang语言编写所以要先安装ERlang再安装RabbitMQ 安装ERlang 借鉴前辈原文地址:https://www.cnblogs.com/fengyumeng/p/11133924.html 第一步:安装依赖 yum -y install gcc glibc-devel make ncurses-devel open…

快速上手 Spring Boot:基础使用详解

快速上手 Spring Boot:基础使用详解 文章目录 快速上手 Spring Boot:基础使用详解1、什么是SpringBoot2、Springboot快速入门搭建3、SpringBoot起步依赖4、SpringBoot自动配置:以tomcat启动为例5、SpringBoot基础配置6、yaml7、多环境开发配置…

使用Ghostscript将PostScript(.ps)文件转换为PDF文件格式

如何使用Ghostscript将PostScript文件转换为PDF文件格式: /* Example of using GS DLL as a ps2pdf converter. */#if defined(_WIN32) && !defined(_Windows) # define _Windows #endif #ifdef _Windows /* add this source to a project with gsdll32.dll, or comp…

顶尖项目经理都在用的SOP

接受任务SOP 了解任务背景了解任务目标(包含deadline)拆解任务,确认负责人执行方案审批确认跟进执行并定期汇报验收结果,进行反馈相关文档存档,形成闭环 推进任务SOP - PDCA循环 制定计划 Plan。依据目标&#xff0c…

MacBook Pro 忘记root用户密码,重置密码步骤

一、以普通用户名登录系统,并打开terminal终端, 输入:sudo bash sudo bash Password:*****(输入当前用户的密码) 成功后进入bash-3.2#的命令模式 二、在bash-3.2#命令模式下 输入:sudo passwd root sud…

生信算法8 - HGVS转换与氨基酸字母表

HGVS 概念 HGVS 人类基因组变异协会(Human Genome Variation Society)提出的转录本编号,cDNA 参考序列(以前缀“c.”表示)、氨基酸参考序列(以前缀“p.”表示)。cDNA 中一种碱基被另一种碱基取代,以“>”进行表示,如:c.2186A&…

python数据分析——数据预处理

数据预处理 前言一、查看数据数据表的基本信息查看info()示例 查看数据表的大小shape()示例 数据格式的查看type()dtype()dtypes()示例一示例二 查看具体的数据分布describe()示例 二…

算法常见手写代码

1.NMS def py_cpu_nms(dets, thresh):"""Pure Python NMS baseline."""#x1、y1、x2、y2、以及score赋值x1 dets[:, 0]y1 dets[:, 1]x2 dets[:, 2]y2 dets[:, 3]scores dets[:, 4]#每一个检测框的面积areas (x2 - x1 1) * (y2 - y1 1)#按…

Windows环境如何ssh远程连接本地局域网内的Archcraft系统

文章目录 前言1. 本地SSH连接测试2. Archcraft安装Cpolar3. 配置 SSH公网地址4. 公网远程SSH连接小结 5. 固定SSH公网地址6. SSH固定地址连接 前言 本文主要介绍如何在Archcraft系统中安装Cpolar内网穿透工具,并以实现Windows环境ssh远程连接本地局域网Archcraft系统来说明使用…

相位和展开相位

相位 (Phase) 相位是一个周期信号在一个周期内的位置,通常以角度(度或弧度)表示。在许多应用中,相位被限制在一个周期内。例如,相位通常被限定在 −180∘到 180∘ 或 0∘ 到 360∘ 之间。 示例 −90∘ 表示信号在周…

从基础到高级:视频直播美颜SDK的开发教学

本篇文章,小编将从基础到高级,详细讲解视频直播美颜SDK的开发过程,帮助开发者更好地掌握这一技术。 一、基础知识 什么是视频直播美颜SDK? 视频直播美颜SDK包含了一系列用于视频处理的功能模块,特别是美颜效果的实现…

Linux高并发服务器开发(一)GCC和Make

文章目录 1 工作流程2 静态库和动态库连接2.1 静态连接2.2 动态链接 3 静态库制作和使用4 动态库的制作和使用5 GDB 调试器6 Makefile 1 工作流程 第一步预处理,生成.i 第二部生成汇编文件.s 第三部生成目标代码.o 第四部生成可执行文件 2 静态库和动态库连接 2.1…

使用Mixamo极简绑骨,导入unity中使用

如果你只想专注于角色建模,对于动画设计没有过多精力;如果你想白嫖别人的角色动画,用到自己的模型上;那么,这个网站很适合你:https://www.mixamo.com/ 操作步骤: 首先将自己的模型上传到这个网…

精确控制激励功率,保障晶振正常工作

随着科技的发展,晶振在电子产品中的应用越来越广泛。作为电路中的重要组成部分,晶振的性能直接影响着整个电路的稳定性和可靠性。激励功率是影响晶振性能的关键因素之一,因此,对晶振激励功率的控制至关重要。 一、激励功率的含义…