厂里资讯之异步通知文章上下架

kafka及异步通知文章上下架

1)自媒体文章上下架

需求分析

2)kafka概述

消息中间件对比

特性ActiveMQRabbitMQRocketMQKafka
开发语言javaerlangjavascala
单机吞吐量万级万级10万级100万级
时效性msusmsms级以内
可用性高(主从)高(主从)非常高(分布式)非常高(分布式)
功能特性成熟的产品、较全的文档、各种协议支持好并发能力强、性能好、延迟低MQ功能比较完善,扩展性佳只支持主要的MQ功能,主要应用于大数据领域

消息中间件对比-选择建议

消息中间件建议
Kafka追求高吞吐量,适合产生大量数据的互联网服务的数据收集业务
RocketMQ可靠性要求很高的金融互联网领域,稳定性高,经历了多次阿里双11考验
RabbitMQ性能较好,社区活跃度高,数据量没有那么大,优先选择功能比较完备的RabbitMQ

kafka介绍

Kafka 是一个分布式流媒体平台,类似于消息队列或企业消息传递系统。kafka官网:Apache Kafka

kafka介绍-名词解释

  • producer:发布消息的对象称之为主题生产者(Kafka topic producer)

  • topic:Kafka将消息分门别类,每一类的消息称之为一个主题(Topic)

  • consumer:订阅消息并处理发布的消息的对象称之为主题消费者(consumers)

  • broker:已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker)。 消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

3)kafka安装配置

Kafka对于zookeeper是强依赖,保存kafka相关的节点数据,所以安装Kafka之前必须先安装zookeeper

  • Docker安装zookeeper

下载镜像:

docker pull zookeeper:3.4.14

创建容器

docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14
  • Docker安装kafka

下载镜像:

docker pull wurstmeister/kafka:2.12-2.3.1

创建容器

docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=120.53.91.117 \
--env KAFKA_ZOOKEEPER_CONNECT=120.53.91.117:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://120.53.91.117:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
-p 9092:9092 wurstmeister/kafka:2.12-2.3.1

4)kafka入门

  • 生产者发送消息,多个消费者只能有一个消费者接收到消息

  • 生产者发送消息,多个消费者都可以接收到消息

(1)创建kafka-demo项目,导入依赖

<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId>
</dependency>

(2)生产者发送消息

package com.kjz.kafka.sample;
​
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
​
import java.util.Properties;
​
/*** 生产者*/
public class ProducerQuickStart {
​public static void main(String[] args) {//1.kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");//发送失败,失败的重试次数properties.put(ProducerConfig.RETRIES_CONFIG,5);//消息key的序列化器properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//消息value的序列化器properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
​//2.生产者对象KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);
​//封装发送的消息ProducerRecord<String,String> record = new ProducerRecord<String, String>("itheima-topic","100001","hello kafka");
​//3.发送消息producer.send(record);
​//4.关闭消息通道,必须关闭,否则消息发送不成功producer.close();}
​
}

(3)消费者接收消息

package com.kjz.kafka.sample;
​
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
​
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;
​
/*** 消费者*/
public class ConsumerQuickStart {
​public static void main(String[] args) {//1.添加kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");//消费者组properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");//消息的反序列化器properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
​//2.消费者对象KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);
​//3.订阅主题consumer.subscribe(Collections.singletonList("itheima-topic"));
​//当前线程一直处于监听状态while (true) {//4.获取消息ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord.key());System.out.println(consumerRecord.value());}}
​}
​
}

总结

  • 生产者发送消息,多个消费者订阅同一个主题,只能有一个消费者收到消息(一对一)

  • 生产者发送消息,多个消费者订阅同一个主题,所有消费者都能收到消息(一对多)

5)kafka高可用设计

5.1)集群

  • Kafka 的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成

  • 这样如果集群中某一台机器宕机,其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供高可用的手段之一

5.2)备份机制(Replication)

Kafka 中消息的备份又叫做 副本(Replica)

Kafka 定义了两类副本:

  • 领导者副本(Leader Replica)

  • 追随者副本(Follower Replica)

同步方式

ISR(in-sync replica)需要同步复制保存的follower

如果leader失效后,需要选出新的leader,选举的原则如下:

第一:选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的

第二:如果ISR列表中的follower都不行了,就只能从其他follower中选取

极端情况,就是所有副本都失效了,这时有两种方案

第一:等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定

第二:选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整

6)kafka生产者详解

6.1)发送类型
  • 同步发送

    使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功

RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());
  • 异步发送

    调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数

//异步消息发送
producer.send(kvProducerRecord, new Callback() {@Overridepublic void onCompletion(RecordMetadata recordMetadata, Exception e) {if(e != null){System.out.println("记录异常信息到日志表中");}System.out.println(recordMetadata.offset());}
});
6.2)参数详解
  • ack

代码的配置方式:

//ack配置  消息确认机制
prop.put(ProducerConfig.ACKS_CONFIG,"all");

参数的选择说明

确认机制说明
acks=0生产者在成功写入消息之前不会等待任何来自服务器的响应,消息有丢失的风险,但是速度最快
acks=1(默认值)只要集群首领节点收到消息,生产者就会收到一个来自服务器的成功响应
acks=all只有当所有参与赋值的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应
  • retries

生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

代码中配置方式:

//重试次数
prop.put(ProducerConfig.RETRIES_CONFIG,10);
  • 消息压缩

默认情况下, 消息发送时不会被压缩。

代码中配置方式:

//数据压缩
prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法说明
snappy占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用
lz4占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观
gzip占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。

7)kafka消费者详解

7.1)消费者组

  • 消费者组(Consumer Group) :指的就是由一个或多个消费者组成的群体

  • 一个发布在Topic上消息被分发给此消费者组中的一个消费者

    • 所有的消费者都在一个组中,那么这就变成了queue模型

    • 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型

7.2)消息有序性

应用场景:

  • 即时消息中的单对单聊天和群聊,保证发送方消息发送顺序与接收方的顺序一致

  • 充值转账两个渠道在同一个时间进行余额变更,短信通知必须要有顺序

topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序地处理Topic的所有消息,那就只提供一个分区。

7.3)提交和偏移量

kafka不会像其他JMS队列那样需要得到消费者的确认,消费者可以使用kafka来追踪消息在分区的位置(偏移量)

消费者会往一个叫做_consumer_offset的特殊主题发送消息,消息里包含了每个分区的偏移量。如果消费者发生崩溃或有新的消费者加入群组,就会触发再均衡

正常的情况

如果消费者2挂掉以后,会发生再均衡,消费者2负责的分区会被其他消费者进行消费

再均衡后不可避免会出现一些问题

问题一:

如果提交偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

问题二:

如果提交的偏移量大于客户端的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

如果想要解决这些问题,还要知道目前kafka提交偏移量的方式:

提交偏移量的方式有两种,分别是自动提交偏移量和手动提交

  • 自动提交偏移量

当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll()方法接收的最大偏移量提交上去

  • 手动提交 ,当enable.auto.commit被设置为false可以有以下三种提交方式

    • 提交当前偏移量(同步提交)

    • 异步提交

    • 同步和异步组合提交

1.提交当前偏移量(同步提交)

enable.auto.commit设置为false,让应用程序决定何时提交偏移量。使用commitSync()提交偏移量,commitSync()将会提交poll返回的最新的偏移量,所以在处理完所有记录后要确保调用了commitSync()方法。否则还是会有消息丢失的风险。

只要没有发生不可恢复的错误,commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());try {consumer.commitSync();//同步提交当前最新的偏移量}catch (CommitFailedException e){System.out.println("记录提交失败的异常:"+e);}
​}
}

2.异步提交

手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。当然我们可以减少手动提交的频率,但这个会增加消息重复的概率(和自动提交一样)。另外一个解决办法是,使用异步提交的API。

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {if(e!=null){System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);}}});
}

3.同步和异步组合提交

异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖。

举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。

因此我们可以采用同步与异步相结合的提交方式,在正式的代码中采用异步提交,同时对这个代码块进行try catch 处理,如果捕获到异常那么就执行同步提交。

try {while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync();}
}catch (Exception e){+e.printStackTrace();System.out.println("记录错误信息:"+e);
}finally {try {consumer.commitSync();}finally {consumer.close();}
}

8)springboot集成kafka

8.1)入门

1.导入spring-kafka依赖信息

<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- kafkfa --><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><exclusions><exclusion><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></exclusion></exclusions></dependency><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId></dependency>
</dependencies>

2.在resources下创建文件application.yml

server:port: 9991
spring:application:name: kafka-demokafka:bootstrap-servers: 192.168.200.130:9092producer:retries: 10key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerconsumer:group-id: ${spring.application.name}-testkey-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializer

3.消息生产者

package com.kjz.kafka.controller;
​
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
​
@RestController
public class HelloController {
​@Autowiredprivate KafkaTemplate<String,String> kafkaTemplate;
​@GetMapping("/hello")public String hello(){kafkaTemplate.send("itcast-topic","黑马程序员");return "ok";}
}

4.消息消费者

package com.kjz.kafka.listener;
​
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
​
@Component
public class HelloListener {
​@KafkaListener(topics = "kjz-topic")public void onMessage(String message){if(!StringUtils.isEmpty(message)){System.out.println(message);}
​}
}
8.2)传递消息为对象

目前springboot整合后的kafka,因为序列化器是StringSerializer,这个时候如果需要传递对象可以有两种方式

方式一:可以自定义序列化器,对象类型众多,这种方式通用性不强,本章节不介绍

方式二:可以把要传递的对象进行转json字符串,接收消息后再转为对象即可,本项目采用这种方式

  • 发送消息

@GetMapping("/hello")
public String hello(){User user = new User();user.setUsername("xiaowang");user.setAge(18);
​kafkaTemplate.send("user-topic", JSON.toJSONString(user));
​return "ok";
}
  • 接收消息

package com.kjz.kafka.listener;
​
import com.alibaba.fastjson.JSON;
import com.heima.kafka.pojo.User;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
​
@Component
public class HelloListener {
​@KafkaListener(topics = "user-topic")public void onMessage(String message){if(!StringUtils.isEmpty(message)){User user = JSON.parseObject(message, User.class);System.out.println(user);}
​}
}

9)自媒体文章上下架功能完成

9.1)需求分析

  • 已发表且已上架的文章可以下架

  • 已发表且已下架的文章可以上架

9.2)流程说明

9.3)接口定义
说明
接口路径/api/v1/news/down_or_up
请求方式POST
参数DTO
响应结果ResponseResult

DTO

@Data
public class WmNewsDto {private Integer id;/*** 是否上架  0 下架  1 上架*/private Short enable;}

ResponseResult

9.4)自媒体文章上下架-功能实现

9.4.1)接口定义

在changli-Information-wemedia工程下的WmNewsController新增方法

@PostMapping("/down_or_up")
public ResponseResult downOrUp(@RequestBody WmNewsDto dto){return null;
}

在WmNewsDto中新增enable属性 ,完整的代码如下:

package com.kjz.model.wemedia.dtos;
​
import lombok.Data;
​
import java.util.Date;
import java.util.List;
​
@Data
public class WmNewsDto {private Integer id;/*** 标题*/private String title;/*** 频道id*/private Integer channelId;/*** 标签*/private String labels;/*** 发布时间*/private Date publishTime;/*** 文章内容*/private String content;/*** 文章封面类型  0 无图 1 单图 3 多图 -1 自动*/private Short type;/*** 提交时间*/private Date submitedTime; /*** 状态 提交为1  草稿为0*/private Short status;/*** 封面图片列表 多张图以逗号隔开*/private List<String> images;
​/*** 上下架 0 下架  1 上架*/private Short enable;
}

9.4.2)业务层编写

在WmNewsService新增方法

/*** 文章的上下架* @param dto* @return*/
public ResponseResult downOrUp(WmNewsDto dto);

实现方法

/*** 文章的上下架* @param dto* @return*/
@Override
public ResponseResult downOrUp(WmNewsDto dto) {//1.检查参数if(dto.getId() == null){return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);}
​//2.查询文章WmNews wmNews = getById(dto.getId());if(wmNews == null){return ResponseResult.errorResult(AppHttpCodeEnum.DATA_NOT_EXIST,"文章不存在");}
​//3.判断文章是否已发布if(!wmNews.getStatus().equals(WmNews.Status.PUBLISHED.getCode())){return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID,"当前文章不是发布状态,不能上下架");}
​//4.修改文章enableif(dto.getEnable() != null && dto.getEnable() > -1 && dto.getEnable() < 2){update(Wrappers.<WmNews>lambdaUpdate().set(WmNews::getEnable,dto.getEnable()).eq(WmNews::getId,wmNews.getId()));}return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
}

9.4.3)控制器

@PostMapping("/down_or_up")
public ResponseResult downOrUp(@RequestBody WmNewsDto dto){return wmNewsService.downOrUp(dto);
}

9.4.4)测试

9.5)消息通知article端文章上下架

9.5.1)在changli-Information-common模块下导入kafka依赖

<!-- kafkfa -->
<dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId>
</dependency>
<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId>
</dependency>

9.5.2)在自媒体端的nacos配置中心配置kafka的生产者

spring:kafka:bootstrap-servers: 192.168.200.130:9092producer:retries: 10key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializer

9.5.3)在自媒体端文章上下架后发送消息

//发送消息,通知article端修改文章配置
if(wmNews.getArticleId() != null){Map<String,Object> map = new HashMap<>();map.put("articleId",wmNews.getArticleId());map.put("enable",dto.getEnable());kafkaTemplate.send(WmNewsMessageConstants.WM_NEWS_UP_OR_DOWN_TOPIC,JSON.toJSONString(map));
}

常量类:

public class WmNewsMessageConstants {
​public static final String WM_NEWS_UP_OR_DOWN_TOPIC="wm.news.up.or.down.topic";
}

9.5.4)在article端的nacos配置中心配置kafka的消费者

spring:kafka:bootstrap-servers: 192.168.200.130:9092consumer:group-id: ${spring.application.name}key-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializer

9.5.5)在article端编写监听,接收数据

package com.kjz.article.listener;
​
import com.alibaba.fastjson.JSON;
import com.kjz.article.service.ApArticleConfigService;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
​
import java.util.Map;
​
@Component
@Slf4j
public class ArtilceIsDownListener {
​@Autowiredprivate ApArticleConfigService apArticleConfigService;
​@KafkaListener(topics = WmNewsMessageConstants.WM_NEWS_UP_OR_DOWN_TOPIC)public void onMessage(String message){if(StringUtils.isNotBlank(message)){Map map = JSON.parseObject(message, Map.class);apArticleConfigService.updateByMap(map);log.info("article端文章配置修改,articleId={}",map.get("articleId"));}}
}

9.5.6)修改ap_article_config表的数据

新建ApArticleConfigService

package com.kjz.article.service;
​
import com.baomidou.mybatisplus.extension.service.IService;
import com.heima.model.article.pojos.ApArticleConfig;
​
import java.util.Map;
​
public interface ApArticleConfigService extends IService<ApArticleConfig> {
​/*** 修改文章配置* @param map*/public void updateByMap(Map map);
}

实现类:

package com.kjz.article.service.impl;import com.baomidou.mybatisplus.core.toolkit.Wrappers;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.kjz.article.mapper.ApArticleConfigMapper;
import com.kjz.article.service.ApArticleConfigService;
import com.kjz.model.article.pojos.ApArticleConfig;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;import java.util.Map;@Service
@Slf4j
@Transactional
public class ApArticleConfigServiceImpl extends ServiceImpl<ApArticleConfigMapper, ApArticleConfig> implements ApArticleConfigService {/*** 修改文章配置* @param map*/@Overridepublic void updateByMap(Map map) {//0 下架 1 上架Object enable = map.get("enable");boolean isDown = true;if(enable.equals(1)){isDown = false;}//修改文章配置update(Wrappers.<ApArticleConfig>lambdaUpdate().eq(ApArticleConfig::getArticleId,map.get("articleId")).set(ApArticleConfig::getIsDown,isDown));}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/29272.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录算法训练营第41天|● 01背包问题 二维 ● 01背包问题 一维● 416. 分割等和子集

背包问题 二维01 背包 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i]&#xff0c;得到的价值是value[i] 。每件物品只能用一次&#xff0c;求解将哪些物品装入背包里物品价值总和最大。 对于背包问题&#xff0c;有一种写法&#xff0c; 是使用二维数…

Android网络性能监控方案 android线上性能监测

1 Handler消息机制 这里我不会完整的从Handler源码来分析Android的消息体系&#xff0c;而是从Handler自身的特性引申出线上卡顿监控的策略方案。 1.1 方案确认 首先当我们启动一个App的时候&#xff0c;是由AMS通知zygote进程fork出主进程&#xff0c;其中主进程的入口就是Ac…

Mysqld数据库管理

一.Mysqld数据库类型 常用的数据类型 int 整型 无符号[0-4294967296&#xff08;2的32次方&#xff09;-1]&#xff0c;有符号[-2147483648&#xff08;2的31次方&#xff09;-2147483647]float单精度浮点 4字节32位double双精度浮点 8字节64位char固定长度的字符类型…

Matlab基础篇:数据输入输出

前言 数据输入和输出是 Matlab 数据分析和处理的核心部分。良好的数据输入输出能够提高工作效率&#xff0c;并确保数据处理的准确性。本文将详细介绍 Matlab 数据输入输出的各种方法&#xff0c;包括导入和导出数据、数据处理和数据可视化。 一、导入数据 Matlab 提供了多种方…

计算机网络:1概述、2物理层

目录 概述因特网网络、互连网&#xff08;互联网&#xff09;与因特网的区别与关系因特网发展的三个阶段因特网服务提供者&#xff08;Internet Service Provider&#xff0c;ISP&#xff09;因特网的标准化工作因特网的管理结构 三种交换电路交换分组交换报文交换 计算机网络性…

Threejs-09、贴图的加载与环境遮蔽强度设置

1、创建文理加载器 let textureLoader new THREE.TextureLoader();2、加载贴图 // 加载文理 let texture textureLoader.load("./img/image.png") // 加载ao贴图 let aoMap textureLoader.load("./img/image.png");3、创建一个平面 let planeGeomet…

常见日志库NLog、log4net、Serilog和Microsoft.Extensions.Logging介绍和区别

在C#中&#xff0c;日志库的选择主要取决于项目的具体需求&#xff0c;包括性能、易用性、可扩展性等因素。以下是关于NLog、log4net、Serilog和Microsoft.Extensions.Logging的基本介绍和使用示例。 包含如何配置输出日志到当前目录下的log.txt文件及控制台的示例&#xff0c;…

springboot整合sentinel接口熔断

背景 请求第三方接口或者慢接口需要增加熔断处理&#xff0c;避免因为慢接口qps过大导致应用大量工作线程陷入阻塞以至于其他正常接口都不可用&#xff0c;最近项目测试环境就因为一个查询的慢接口调用次数过多&#xff0c;导致前端整个首页都无法加载。 依赖下载 springboo…

网络安全(完整)

WAPI鉴别及密钥管理的方式有两种&#xff0c;既基于证书和基于预共享密钥PSK。若采用基于证书的方式&#xff0c;整个国产包括证书鉴别、单播密钥协商与组播密钥通告&#xff1b;若采用预共享密钥方式&#xff0c;整个国产则为单播密钥协商与组播密钥通告蠕虫利用信息系统缺陷&…

React+TS前台项目实战(十)-- 全局常用组件CopyText封装

文章目录 前言CopyText组件1. 功能分析2. 代码详细注释3. 使用方式4. 效果展示 总结 前言 今天这篇主要讲项目常用复制文本组件封装&#xff0c;这个组件是一个用于拷贝文本的 React 组件&#xff0c;它提供了拷贝&#xff0c;国际化和消息提示的功能 CopyText组件 1. 功能分…

每日一题——Python实现PAT甲级1144 The Missing Number(举一反三+思想解读+逐步优化)四千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页&#xff1a;用哲学编程-CSDN博客专栏&#xff1a;每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法 时间复杂度分析 空间复杂度分析 总体空间复杂度&#xff1a;O(N) 总结 我…

端口映射工具下载?

天联是一款强大的端口映射工具&#xff0c;它能够帮助用户实现远程数据采集管理、异地统一管理、随时随地协同办公等多种场景的应用。无论您是医药、餐饮、商超等零售行业的企业&#xff0c;还是需要使用OA、CRM、ERP、财务进销存等系统的企业&#xff0c;甚至是使用视频监控设…

适用于世界上最先进的医疗应用的高压电阻器

我们的电阻器专为用于医疗诊断、治疗和预防的各种产品而设计。从小型植入式和非侵入性设备到大型诊断成像设备&#xff0c;医疗制造商之所以选择 EAK电阻器&#xff0c;是因为操作环境是高电压和磁场&#xff0c;准确性和稳定性至关重要。 EAK 专有的精密打印技术生产出非常适…

如何应对 CentOS 的停更?

文章目录 如何应对 CentOS 的停更&#xff1f;Linux发行版CentOS停更后&#xff0c;我们可选的替代品RHEL LinuxRocky Linux公有云 LinuxDebian 系 Linux 如何应对 CentOS 的停更&#xff1f; Linux发行版 Linux内核是开源的&#xff0c;任何人都可以获取源代码&#xff0c;进…

嵌入式开发实验项目【基于Arduino的智能循迹小车】步进电机版本(含完整可执行详细代码)| 另附:测试行进传感器可用性,测试小车轱辘/轮胎是否可用

“真正的光明决不是永没有黑暗的时间,只是永不被黑暗所掩蔽罢了。真正的英雄决不是永没有卑下的情操,只是永不被卑下的情操所屈服罢了。” 🎯作者主页: 追光者♂🔥 🌸个人简介: 💖[1] 计算机专业硕士研究生💖 🌿[2] 2023年城市之星领跑者TOP1(哈尔…

Hi3861 OpenHarmony嵌入式应用入门--启动流程

目录 BootLoader的启动与运行 Hi3861 RiSC-V boot 启动文件介绍 Loaderboot 启动过程 Flashboot代码介绍 printf串口配置 内核启动任务 BootLoader的启动与运行 Hi3861 RiSC-V boot 启动文件介绍 - Hi3861 的引导程序分为两部分&#xff0c;一部分是在芯片出厂时已经固…

Redis-数据结构-跳表详解

Redis概述 Redis-数据结构-跳表详解 跳表&#xff08;Skip List&#xff09;是一种基于并联的链表结构&#xff0c;用于在有序元素序列中快速查找元素的数据结构。 Redis 中广泛使用跳表来实现有序集合&#xff08;Sorted Set&#xff09;这一数据结构。 1.跳表的基本概念和…

【源码】Spring事务之事务失效及原理

Spring事务 1、【源码】SpringBoot事务注册原理 2、【源码】Spring Data JPA原理解析之事务注册原理 3、【源码】Spring Data JPA原理解析之事务执行原理 4、【源码】SpringBoot编程式事务使用及执行原理 5、【源码】Spring事务之传播特性的详解 6、【源码】Spring事务之…

搜索与人工智能相结合如何解决企业数据问题?

作者&#xff1a;来自 Elastic Fermi Fang 企业数据是好处还是负担&#xff1f; 组织正被数据淹没 —— 从安全事件日志和应用程序错误消息到物联网指标和帮助中心常见问题解答。这些丰富的信息通常存在于孤立的孤岛中&#xff0c;在整合这些信息以提升客户体验、提高运营弹性…

thinkphp5使用模型删除与复杂查询EXP

模型删除 应用软删除 表中需要有字段&#xff0c;deletetime 模型中使用下面方法 use SoftDelete;protected $deleteTime delete_time;真实删除 // 软删除 User::destroy(1); // 真实删除 User::destroy(1,true); $user User::get(1); // 软删除 $user->delete(); // 真…