AI大模型在健康睡眠监测中的深度融合与实践案例

在这里插入图片描述

文章目录

    • 1. 应用方案
    • 2. 技术实现
      • 2.1 数据采集与预处理
      • 2.2 构建与训练模型
      • 2.3 个性化建议生成
    • 3. 优化策略
    • 4. 应用示例:多模态数据融合与实时监测
      • 4.1 数据采集
      • 4.2 实时监测与反馈
    • 5. 深入分析模型选择和优化
      • 5.1 LSTM模型的优势和优化策略
      • 5.2 CNN模型的优势和优化策略
      • 5.3 Transformer模型的优势和优化策略
    • 6. 数据隐私与安全策略
    • 7. 深入探讨未来发展方向
      • 7.1. 多模态数据融合
      • 7.2. 自适应学习
      • 7.3. 跨平台集成
    • 8. 深度学习模型优化
    • 9. 总结

随着穿戴设备的普及和AI技术的发展,利用AI大模型在睡眠监测中的应用成为可能。这种深度融合应用能够提供更准确、更个性化的睡眠分析与建议,帮助用户更好地管理睡眠健康。以下是AI大模型在穿戴设备睡眠监测中的应用方案、技术实现和优化策略。

1. 应用方案

  1. 多模态数据融合

    • 生理数据:心率、呼吸率、体温等。
    • 环境数据:光照、噪音、温度等。
    • 行为数据:运动数据、睡眠姿势等。
  2. 高级数据分析

    • 睡眠阶段分类:利用深度学习模型对数据进行分析,分类出浅睡、深睡、REM睡眠等阶段。
    • 异常检测:检测睡眠呼吸暂停、失眠等异常情况。
  3. 个性化建议

    • 基于用户的历史数据和模型分析结果,提供个性化的睡眠改善建议。
  4. 实时监测与反馈

    • 实时监测用户睡眠状态,及时提供反馈和建议。

2. 技术实现

2.1 数据采集与预处理

首先,需要从穿戴设备中获取各类数据,并进行预处理。

import numpy as np
import pandas as pd# 模拟数据采集
heart_rate_data = np.random.normal(60, 5, 1000)
respiration_rate_data = np.random.normal(16, 2, 1000)
temperature_data = np.random.normal(36.5, 0.5, 1000)
movement_data = np.random.normal(0, 1, 1000)  # 假设为运动强度数据# 创建DataFrame
data = pd.DataFrame({'heart_rate': heart_rate_data,'respiration_rate': respiration_rate_data,'temperature': temperature_data,'movement': movement_data
})# 数据预处理
def preprocess_data(data):# 归一化处理data_normalized = (data - data.mean()) / data.std()return data_normalizeddata_preprocessed = preprocess_data(data)

2.2 构建与训练模型

利用深度学习模型(如LSTM)对预处理后的数据进行训练,识别睡眠阶段。

from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout# 构建LSTM模型
model = Sequential()
model.add(LSTM(64, return_sequences=True, input_shape=(None, 4)))  # 输入为4维数据
model.add(Dropout(0.2))
model.add(LSTM(64, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(3, activation='softmax'))  # 输出为3类:浅睡、深睡、REMmodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 模拟训练数据
X_train = np.expand_dims(data_preprocessed.values, axis=0)
y_train = np.random.randint(0, 3, (1, 1000))  # 假设标签数据# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32)

2.3 个性化建议生成

根据模型输出的睡眠阶段和用户历史数据,生成个性化的睡眠建议。

def generate_sleep_advice(sleep_data):# 分析睡眠数据deep_sleep_ratio = np.sum(sleep_data == 1) / len(sleep_data)rem_sleep_ratio = np.sum(sleep_data == 2) / len(sleep_data)advice = "您的睡眠分析结果如下:\n"advice += f"深睡比例: {deep_sleep_ratio:.2f}\n"advice += f"REM睡眠比例: {rem_sleep_ratio:.2f}\n"if deep_sleep_ratio < 0.2:advice += "建议增加深睡时间,保持规律的作息,避免在睡前使用电子设备。\n"if rem_sleep_ratio < 0.2:advice += "建议改善睡眠质量,尝试放松训练,如冥想或听轻音乐。\n"return advice# 模拟生成睡眠阶段数据
predicted_sleep_stages = model.predict(X_train)[0]
advice = generate_sleep_advice(predicted_sleep_stages)
print(advice)

3. 优化策略

  1. 模型优化与压缩

    • 使用模型量化和剪枝技术,减少模型的计算量和内存占用,以适应穿戴设备的资源限制。
  2. 个性化与自适应学习

    • 根据用户的历史数据和反馈,不断调整和优化模型,提高个性化分析的准确性。
  3. 实时性与延迟优化

    • 通过边缘计算和高效的数据处理技术,减少数据传输和处理的延迟,提升实时监测的效果。
  4. 数据隐私与安全

    • 采用数据加密和隐私保护技术,确保用户数据的安全性和隐私性。

4. 应用示例:多模态数据融合与实时监测

4.1 数据采集

# 模拟实时数据采集
def collect_real_time_data():heart_rate = np.random.normal(60, 5)respiration_rate = np.random.normal(16, 2)temperature = np.random.normal(36.5, 0.5)movement = np.random.normal(0, 1)return np.array([heart_rate, respiration_rate, temperature, movement])# 模拟实时数据采集
real_time_data = collect_real_time_data()
print("实时数据采集:", real_time_data)

4.2 实时监测与反馈

# 实时监测和睡眠阶段预测
def real_time_sleep_monitor(model):data_window = []while True:new_data = collect_real_time_data()data_window.append(new_data)if len(data_window) > 100:data_window.pop(0)  # 保持固定窗口大小if len(data_window) == 100:data_window_array = np.expand_dims(np.array(data_window), axis=0)sleep_stage = model.predict(data_window_array)print(f"当前睡眠阶段: {np.argmax(sleep_stage)}")# 提供实时反馈if np.argmax(sleep_stage) == 2:  # 假设2代表深睡print("进入深睡状态,请保持安静环境。")elif np.argmax(sleep_stage) == 0:  # 假设0代表浅睡print("浅睡状态,建议放松。")time.sleep(1)  # 模拟每秒采集一次数据# 启动实时监测
# real_time_sleep_monitor(model)

5. 深入分析模型选择和优化

5.1 LSTM模型的优势和优化策略

优势

  • LSTM擅长处理时间序列数据,能够记住长期依赖关系,适合用于分析连续的生理数据,如心率和呼吸率。
  • 在睡眠监测中,LSTM能够准确捕捉不同睡眠阶段的特征。

优化策略

  • 减小模型大小:通过剪枝和量化技术减少模型参数数量,减小模型大小,适应穿戴设备的计算资源限制。
  • 改进架构:采用双向LSTM(BiLSTM)或多层LSTM结构,提升模型的表达能力和准确性。
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout, Bidirectionaldef build_optimized_lstm_model(input_shape):model = Sequential()model.add(Bidirectional(LSTM(64, return_sequences=True), input_shape=input_shape))model.add(Dropout(0.2))model.add(Bidirectional(LSTM(64, return_sequences=False)))model.add(Dropout(0.2))model.add(Dense(3, activation='softmax'))model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])return modelinput_shape = (None, 4)  # 4个特征:心率、呼吸率、体温、运动
optimized_model = build_optimized_lstm_model(input_shape)

5.2 CNN模型的优势和优化策略

优势

  • CNN能够高效地提取局部特征,适用于检测睡眠数据中的特定模式,如呼吸暂停和心率变化。
  • CNN的参数共享机制减少了模型参数量,提升计算效率。

优化策略

  • 卷积核优化:通过实验选择最优的卷积核大小和池化策略,提高特征提取能力。
  • 深层网络:构建更深的卷积网络(如ResNet、DenseNet),提升模型的表达能力和准确性。
from keras.models import Sequential
from keras.layers import Conv1D, MaxPooling1D, Flatten, Densedef build_optimized_cnn_model(input_shape):model = Sequential()model.add(Conv1D(64, kernel_size=3, activation='relu', input_shape=input_shape))model.add(MaxPooling1D(pool_size=2))model.add(Conv1D(128, kernel_size=3, activation='relu'))model.add(MaxPooling1D(pool_size=2))model.add(Flatten())model.add(Dense(128, activation='relu'))model.add(Dense(3, activation='softmax'))model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])return modelinput_shape = (100, 4)  # 100个时间步,4个特征
optimized_cnn_model = build_optimized_cnn_model(input_shape)

5.3 Transformer模型的优势和优化策略

优势

  • Transformer模型擅长捕捉长时间序列中的复杂依赖关系,适用于分析多模态生理数据。
  • 多头注意力机制能够同时关注不同时间步的特征,提高模型的表达能力。

优化策略

  • 多头注意力机制优化:调整注意力头的数量和尺寸,找到最佳配置,提升模型性能。
  • 层次优化:通过实验选择最优的Transformer层数和平行化策略,提高模型的效率和准确性。
from keras.models import Model
from keras.layers import Input, Dense, MultiHeadAttention, LayerNormalization, Dropoutdef build_optimized_transformer_model(input_shape, num_heads=4, ff_dim=64):inputs = Input(shape=input_shape)attention_output = MultiHeadAttention(num_heads=num_heads, key_dim=ff_dim)(inputs, inputs)attention_output = LayerNormalization(epsilon=1e-6)(attention_output)ffn_output = Dense(ff_dim, activation='relu')(attention_output)ffn_output = Dense(input_shape[-1])(ffn_output)outputs = LayerNormalization(epsilon=1e-6)(ffn_output)model = Model(inputs, outputs)model.compile(optimizer='adam', loss='mse', metrics=['accuracy'])return modelinput_shape = (100, 4)
optimized_transformer_model = build_optimized_transformer_model(input_shape)

6. 数据隐私与安全策略

在使用穿戴设备监测用户睡眠数据时,确保数据的隐私与安全至关重要。以下是一些关键策略:

  1. 数据加密:在数据传输和存储过程中,使用加密技术保护数据安全。
from cryptography.fernet import Fernet# 生成密钥
key = Fernet.generate_key()
cipher_suite = Fernet(key)# 加密数据
data = b"Sensitive user data"
encrypted_data = cipher_suite.encrypt(data)# 解密数据
decrypted_data = cipher_suite.decrypt(encrypted_data)
  1. 数据匿名化:在数据处理和分析过程中,去除或模糊化用户身份信息,保护用户隐私。
import pandas as pd# 模拟用户数据
data = pd.DataFrame({'user_id': ['user1', 'user2', 'user3'],'heart_rate': [70, 65, 80],'sleep_stage': ['deep', 'light', 'REM']
})# 匿名化处理
data['user_id'] = data['user_id'].apply(lambda x: 'user_' + str(hash(x)))
print(data)
  1. 访问控制:限制对数据的访问权限,确保只有授权人员和系统能够访问用户数据。
from flask import Flask, request, jsonify
from functools import wrapsapp = Flask(__name__)# 模拟用户数据存储
user_data = {'user_1': {'heart_rate': 70, 'sleep_stage': 'deep'},'user_2': {'heart_rate': 65, 'sleep_stage': 'light'}
}# 模拟访问控制
def requires_auth(f):@wraps(f)def decorated(*args, **kwargs):auth = request.headers.get('Authorization')if auth != 'Bearer secret-token':return jsonify({"message": "Unauthorized"}), 403return f(*args, **kwargs)return decorated@app.route('/api/data', methods=['GET'])
@requires_auth
def get_data():user_id = request.args.get('user_id')return jsonify(user_data.get(user_id, {"message": "User not found"}))if __name__ == '__main__':app.run()

7. 深入探讨未来发展方向

7.1. 多模态数据融合

现状与挑战
当前的穿戴设备主要依赖心率、呼吸率、体温和运动数据进行睡眠监测。虽然这些数据已经能够提供较为全面的睡眠分析,但仍存在一些局限,如对睡眠环境的考虑不足、对其他生理信号(如脑电波)的利用较少。

未来发展
未来的穿戴设备可以通过集成更多类型的传感器,实现多模态数据融合。这不仅包括更多的生理数据(如皮肤电反应、血氧饱和度),还可以包含环境数据(如噪音、光照、温度)和行为数据(如作息时间、日常活动)。通过这些数据的综合分析,能够更准确地判断用户的睡眠质量,并提供更加个性化的建议。

示例

# 模拟多模态数据采集
def collect_multimodal_data():heart_rate = np.random.normal(60, 5)respiration_rate = np.random.normal(16, 2)temperature = np.random.normal(36.5, 0.5)movement = np.random.normal(0, 1)skin_conductance = np.random.normal(5, 1)  # 皮肤电反应blood_oxygen = np.random.normal(98, 1)  # 血氧饱和度noise_level = np.random.normal(30, 5)  # 噪音水平return np.array([heart_rate, respiration_rate, temperature, movement, skin_conductance, blood_oxygen, noise_level])# 模拟数据采集
multimodal_data = collect_multimodal_data()
print("多模态数据采集:", multimodal_data)

7.2. 自适应学习

现状与挑战
目前的模型通常基于固定的数据集进行训练,模型更新和优化需要重新训练并部署。用户的个体差异和动态变化难以实时反映到模型中。

未来发展
通过自适应学习,可以实现模型的持续优化和个性化调整。自适应学习包括在线学习和增量学习,能够在接收到新的数据和用户反馈后,自动调整模型参数,提升模型的准确性和个性化程度。

示例

from sklearn.linear_model import SGDClassifier
import numpy as np# 模拟数据
X_train = np.random.rand(100, 7)  # 7个特征
y_train = np.random.randint(0, 3, 100)  # 3个睡眠阶段# 初始训练
model = SGDClassifier()
model.fit(X_train, y_train)# 模拟新的数据
X_new = np.random.rand(10, 7)
y_new = np.random.randint(0, 3, 10)# 在线学习更新模型
model.partial_fit(X_new, y_new)

7.3. 跨平台集成

现状与挑战
当前的穿戴设备和睡眠监测系统多为独立运行,缺乏与其他健康管理系统的集成。用户需要分别查看和管理不同平台的数据,不利于全面的健康管理。

未来发展
通过跨平台集成,可以实现不同健康数据的互通和综合分析。例如,将睡眠数据与日常活动、饮食、心理状态等数据进行关联分析,提供更全面的健康管理服务。跨平台集成还可以实现数据的共享和协同,提高健康管理的整体效果。

示例

from flask import Flask, request, jsonifyapp = Flask(__name__)# 模拟多平台数据
sleep_data = {'user_1': {'heart_rate': 70, 'sleep_stage': 'deep'},'user_2': {'heart_rate': 65, 'sleep_stage': 'light'}
}activity_data = {'user_1': {'steps': 10000, 'calories_burned': 500},'user_2': {'steps': 8000, 'calories_burned': 400}
}# 跨平台数据集成
@app.route('/api/health_data', methods=['GET'])
def get_health_data():user_id = request.args.get('user_id')if user_id in sleep_data and user_id in activity_data:combined_data = {**sleep_data[user_id], **activity_data[user_id]}return jsonify(combined_data)else:return jsonify({"message": "User not found"}), 404if __name__ == '__main__':app.run()

8. 深度学习模型优化

现状与挑战
深度学习模型通常计算量大,资源消耗高,难以在资源受限的穿戴设备上高效运行。

未来发展
通过模型压缩、知识蒸馏等技术,减少模型的计算复杂度和存储需求。此外,使用边缘计算,将部分计算任务下放到设备端,提高实时性和响应速度。

模型压缩和知识蒸馏示例

from tensorflow_model_optimization.sparsity import keras as sparsity
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense# 构建一个简单的神经网络模型
def build_model():model = Sequential([Dense(128, activation='relu', input_shape=(7,)),Dense(64, activation='relu'),Dense(3, activation='softmax')])model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])return modelmodel = build_model()# 使用模型剪枝技术
pruning_schedule = sparsity.PolynomialDecay(initial_sparsity=0.30, final_sparsity=0.70, begin_step=1000, end_step=2000)
model_for_pruning = sparsity.prune_low_magnitude(model, pruning_schedule=pruning_schedule)model_for_pruning.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_for_pruning.summary()

9. 总结

1、通过AI大模型与穿戴设备的深度融合,可以实现更加智能和个性化的睡眠监测与管理。多模态数据融合、实时监测与反馈、个性化建议生成等技术的应用,能够帮助用户更好地理解和改善自己的睡眠质量。未来,随着技术的不断进步,这种智能化的睡眠监测系统将会越来越普及,为用户提供更全面的健康管理服务。

2、通过详细分析AI大模型在穿戴设备睡眠监测中的技术架构、模型选择、数据处理、实时性要求和隐私保护,可以更好地理解其深度融合应用。选择适合的模型并进行优化,确保数据隐私和安全,是实现智能化睡眠监测系统的关键。未来,随着技术的不断进步,这种智能化的睡眠监测系统将会越来越普及,为用户提供更全面和个性化的健康管理服务。

3、AI大模型在穿戴设备睡眠监测中的深度融合应用,是通过多模态数据融合、自适应学习、跨平台集成以及模型优化等多种技术的综合应用,来实现更加智能和个性化的睡眠管理。未来,随着技术的不断进步和数据的积累,这种智能化的睡眠监测系统将会越来越普及,为用户提供更全面、更科学的健康管理服务。

欢迎点赞|关注|收藏|评论,您的肯定是我创作的动力

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25520.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java版多语言抢单系统 多语言海外AEON抢单可连单加额外单源码 抢单平台搭建开发 抢单开挂的软件

此套是全新开发的java版多语言抢单系统。 后端java&#xff0c;用的若依框架&#xff0c;这套代码前后端是编译后的&#xff0c;测试可以正常使用&#xff0c;语言繁体&#xff0c;英文&#xff0c;日语 源码大小&#xff1a;155M 源码下载&#xff1a;https://download.csd…

图像处理方向信息

前言 Exif 规范 定义了方向标签&#xff0c;用于指示相机相对于所捕获场景的方向。相机可以使用该标签通过方向传感器自动指示方向&#xff0c;也可以让用户通过菜单开关手动指示方向&#xff0c;而无需实际转换图像数据本身。 在图像处理过程中&#xff0c;若是原图文件包含…

Layui弹框中设置输入框自动获取焦点无效/Layui设置Input框自动获取焦点无效,怎么办?

1、问题概述? 有时候为了用户体验,期望当弹框打开的时候,指定的输入框能自动的获取焦点,用户就可以直接输入了。提升了用户体验。但有时候设置的时候没有效果。 2、正常的设置自动获取焦点方式 【input框设置方式】 使用关键字autofocus <input type="text&quo…

Zemax中FFT PSF和惠更斯PSF的区别?

在Zemax“分析”选项卡中&#xff0c;有PSF&#xff08;“点扩散函数”&#xff09;图&#xff0c;主要包括如下两种计算方式&#xff1a; 1. FFT PSF&#xff0c;快速傅里叶变换&#xff08;fast fourier transform&#xff0c;FFT&#xff09; 该方法可以看做是以下点扩散函…

心链14-----项目功能完善补坑+自动跳转登录页 + 重复加入队伍问题(分布式锁) 并发请求问题解决 + 项目部署上线

心链 — 伙伴匹配系统 一、todo 1、强制登录&#xff0c;自动跳转到登录页 解决&#xff1a;axios 全局配置响应拦截、并且添加重定向 1.在myAxios里配置响应拦截 这里我们要改变history 模式的实现&#xff0c;在main.ts里修改 当登录成功后&#xff0c;重定向到个人用户页…

Cyber Weekly #10

赛博新闻 1、最强开源大模型面世&#xff1a;阿里发布Qwen2 6月7日凌晨&#xff0c;阿里巴巴通义千问团队发布了Qwen2系列开源模型。该系列模型包括5个尺寸的预训练和指令微调模型&#xff1a;Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B以及Qwen2-72B。据Qwen官方博客…

Vitis HLS 学习笔记--循环边界包含变量

目录 1. 简介 2. 分析与详解 2.1 未优化 2.2 LOOP_TRIPCOUNT 优化指令 2.3 重写变量循环边界 3. 总结 1. 简介 在硬件设计中&#xff0c;循环的迭代次数通常需要是固定的&#xff0c;因为这有助于资源的预分配和时序分析。 循环边界包含变量意味着循环的迭代次数不是固…

Java进阶_抽象类与方法

抽象类概念 在面向对象的概念中&#xff0c;所有的对象都是通过类来描绘的&#xff0c;但是反过来&#xff0c;并不是所有的类都是用来描绘对象的&#xff0c;如果一个类中没有包含足够的信息来描绘一个具体的对象&#xff0c;这样的类就是抽象类。 抽象类除了不能实例化对象之…

按键精灵安装有乱码并且不能启动的解决办法

在国外购了电脑&#xff0c;系统是英文版 Windows 11&#xff0c;按键精灵死活都装不上去&#xff0c;打开exe的安装文件后出现乱码&#xff0c;安装完了后还是乱码&#xff0c;并且启动不了&#xff0c;以下是解决办法&#xff1a; 进入控制面板&#xff0c;并且点 Region&am…

汇编:结构体

在32位汇编中&#xff0c;结构体&#xff08;structures&#xff09;用于组织和管理复杂的数据类型&#xff0c;结构体可以包含多个不同类型的数据项&#xff08;成员&#xff09;&#xff1b;在MASM&#xff08;Microsoft Macro Assembler&#xff09;中&#xff0c;使用结构体…

CentOS安装Node.js以及JSDOM跳坑记

笔者在一台 CentOS 7.9 的服务器上使用常规的安装命令&#xff1a;sudo yum install node 来安装 Node.js&#xff0c;到最后系统提示&#xff1a; Error: Package: 2:nodejs-20.14.0-1nodesource.x86_64 (nodesource-nodejs) Requires: libstdc.so.6(GLIBCXX_3.4.20)(64bit) …

VUE + nodejs实战

BVDN搭建 D: cd nodejs ::npm install bootstrap ::npm install jquery ::npm install popper.js ::npm install vue npm install vue-router pauseapp.html <!DOCTYPE html> <!DOCTYPE html> <html> <head><!--bootstrap--><link rel"…

MySQL 5.7详细下载安装配置教程(MySQL 5.7安装包)_mysql5.7的安装教程

记录MySQL 5.7 的下载安装教程&#xff0c;并提供了Mysql 安装包 &#xff0c;以下是详细下载安装过程。 一、下载Mysql安装包 网盘下载&#xff1a; 下载MySQL 5.7安装包&#xff0c;网盘下载地址&#xff1a;点击此处直接下载 官网下载&#xff1a; 进入官网&#xff0c…

【设计模式】行为型设计模式之 迭代器模式

介绍 迭代器模式&#xff08;Iterator Pattern&#xff09; 是行为设计模式之一&#xff0c;它提供了一种访问集合对象&#xff08;如列表、数组或其他集合结构&#xff09;中元素的方式&#xff0c;而不需要暴露集合的内部结构。迭代器模式定义了一个迭代器接口&#xff0c;该…

K8S - 用kubectl远程访问内网的k8s集群

在之前的文章 K8S - 在任意node里执行kubectl 命令 介绍过&#xff0c; 通过任何node 的主机&#xff0c; 用kubectl 管理集群是很简单 无非就是两个步骤: 下载 k8s master 上的admin.conf在当前主机配置 K8SCONFIG 环境变量指向 下载的config file 其他内网主机也适用 其…

打字侠是一款PWA网站,如何下载到电脑桌面?

嘿&#xff0c;亲爱的键盘侠们&#xff01; 你是否还在为寻找一款好用的打字练习工具而烦恼&#xff1f;别担心&#xff0c;今天我要给大家介绍一位超级英雄——打字侠&#xff01;它不仅是一个超级酷的打字练习网站&#xff0c;还是一款PWA&#xff08;渐进式网页应用&#x…

链路聚合LACP

#交换设备 链路聚合 理解链路聚合配置&#xff08;LACP) 什么是LACP LACP&#xff08;Link Aggregation Control Protocol&#xff0c;链路聚合控制协议&#xff09;是一种基于IEEE802.3ad标准的实现链路动态聚合与解聚合的协议&#xff0c;它是链路聚合中常用的一种协议。…

WEB-Wordlist-Generator:为扫描后的Web应用生成相关联的字典

关于WEB-Wordlist-Generator WEB-Wordlist-Generator是一款功能强大的字典生成工具&#xff0c;该工具旨在帮助广大研究人员扫描目标Web应用程序并生成与之相关联的字典文件&#xff0c;从而允许我们对相关的网络威胁行为执行预备性应对策略。 功能介绍 当前版本的WEB-Wordli…

微服务之远程调用

常见的远程调用方式 RPC&#xff1a;Remote Produce Call远程过程调用&#xff0c;类似的还有 。自定义数据格式&#xff0c;基于原生TCP通信&#xff0c;速度快&#xff0c;效率高。早期的webservice&#xff0c;现在热门的dubbo &#xff08;12不再维护、17年维护权交给apac…

R语言统计分析——数据集概念和数据结构

参考资料&#xff1a;R语言实战.第2版 1、数据集的概念 数据集通常是由数据构成的一个矩形数组&#xff0c;行表示观测&#xff0c;列表示变量。 不同行业对于数据集的行和列叫法不同。统计学称为观测&#xff08;observation&#xff09;和变量&#xff08;variable&#xff…