kafka如何保证消息不丢失

                Kafka发送消息是异步发送的,所以我们不知道消息是否发送成功,所以会可能造成消息丢失。而且Kafka架构是由生产者-服务器端-消费者三种组成部分构成的。要保证消息不丢失,那么主要有三种解决方法。

生产者(producer)端处理

生产者默认发送消息代码如下:

import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;public class KafkaMessageProducer {public static void main(String[] args) {// 配置Kafka生产者Properties props = new Properties();props.put("bootstrap.servers", "localhost:9092"); // Kafka集群地址props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 键的序列化器props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 值的序列化器// 创建Kafka生产者实例Producer<String, String> producer = new KafkaProducer<>(props);String topic = "test"; // Kafka主题try {// 发送消息到Kafkafor (int i = 0; i < 10; i++) {String message = "Message " + i;ProducerRecord<String, String> record = new ProducerRecord<>(topic, message);producer.send(record);System.out.println("Sent message: " + message);}} catch (Exception e) {e.printStackTrace();} finally {// 关闭Kafka生产者producer.close();}}
}

生产者端要保证消息发送成功,可以有两个方法:

1.把异步发送改成同步发送,这样producer就能实时知道消息的发送结果。

要将 Kafka 发送方法改为同步发送,可以使用 `send()` 方法的返回值Future<RecordMetadata>`, 并调用 `get()` 方法来等待发送完成。

以下是将 Kafka 发送方法改为同步发送的示例代码:

import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
import org.apache.kafka.clients.producer.RecordMetadata;public class KafkaMessageProducer {public static void main(String[] args) {// 配置 Kafka 生产者Properties props = new Properties();props.put("bootstrap.servers", "localhost:9092"); // Kafka 集群地址props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 键的序列化器props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 值的序列化器// 创建 Kafka 生产者实例Producer<String, String> producer = new KafkaProducer<>(props);String topic = "test"; // Kafka 主题try {// 发送消息到 Kafkafor (int i = 0; i < 10; i++) {String message = "Message " + i;ProducerRecord<String, String> record = new ProducerRecord<>(topic, message);RecordMetadata metadata = producer.send(record).get(); // 同步发送并等待发送完成System.out.println("Sent message: " + message + ", offset: " + metadata.offset());}} catch (InterruptedException | ExecutionException e) {e.printStackTrace();} finally {// 关闭 Kafka 生产者producer.close();}}
}

在这个示例代码中,通过调用 send(record).get() 实现了同步发送,其中 get() 方法会阻塞当前线程,直到发送完成并返回消息的元数据。

2.添加异步回调函数来监听消息发送的结果,如果发送失败,可以在回调函数里重新发送。

要保持发送消息成功并添加回调函数,你可以在发送消息的时候指定一个回调函数作为参数。回调 函数将在消息发送完成后被调用,以便你可以在回调函数中处理发送结果。

import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.RecordMetadata;public class KafkaMessageProducer {public static void main(String[] args) {// 配置 Kafka 生产者Properties props = new Properties();props.put("bootstrap.servers", "localhost:9092"); // Kafka 集群地址props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 键的序列化器props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 值的序列化器// 创建 Kafka 生产者实例Producer<String, String> producer = new KafkaProducer<>(props);String topic = "test"; // Kafka 主题try {// 发送消息到 Kafkafor (int i = 0; i < 10; i++) {String message = "Message " + i;ProducerRecord<String, String> record = new ProducerRecord<>(topic, message);// 发送消息并指定回调函数producer.send(record, new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, Exception exception) {if (exception == null) {System.out.println("Sent message: " + message + ", offset: " + metadata.offset());} else {// 这里重新发送消息producer.send(record);exception.printStackTrace();}}});}} finally {// 关闭 Kafka 生产者producer.close();}}
}

在这个示例代码中,我们使用了 send(record, callback) 方法来发送消息,并传递了一个实现了 Callback 接口的匿名内部类作为回调函数。当消息发送完成后,回调函数的 onCompletion() 方法会被调用。你可以根据 RecordMetadata 和 Exception 参数来处理发送结果。
另外producer还提供了一个重试参数,这个参数叫retries,如果因为网络问题或者Broker故障导致producer发送消息失败,那么producer会根据这个参数的值进行重试发送消息。

服务器端(Broker)端

Kafka Broker(服务器端)通过以下方式来确保生产者端消息发送的成功和不丢失:

1. 消息持久化(异步刷盘):Kafka Broker将接收到的消息持久化到磁盘上的日志文件中。这样即使在消息发送后发生故障,Broker能够恢复并确保消息不会丢失。(注意:持久化是由操作系统调度的,如果持久化之前系统崩溃了,那么就因为不能持久化导致数据丢失,但是Kafka没提供同步刷盘策略)

2. 复制与高可用性:Kafka支持分布式部署,可以将消息分布到多个Broker上形成一个Broker集群。在集群中,消息被复制到多个副本中,以提供冗余和高可用性。生产者发送消息时,它可以将消息发送到任何一个Broker,然后Broker将确保消息在集群中的所有副本中都被复制成功。

3. 消息提交确认:当生产者发送消息后,在收到Broker的确认响应之前,生产者会等待。如果消息成功写入并复制到了指定的副本中,Broker会发送确认响应给生产者。如果生产者在指定的时间内没有收到确认响应,它将会尝试重新发送消息,以确保消息不会丢失。

4. 可靠性设置(同步刷盘):生产者可以配置一些参数来提高消息发送的可靠性。例如,可以设置`acks`参数来指定需要收到多少个Broker的确认响应才认为消息发送成功。可以将`acks`设置为`"all"`,表示需要收到所有副本的确认响应才算发送成功。

总之,Kafka Broker通过持久化和复制机制,以及消息确认和可靠性设置,确保生产者端的消息发送成功且不丢失。同时,应注意及时处理可能的错误情况,并根据生产者端需求和场景合理配置相应的参数。

对于使用YAML文件进行Kafka配置的情况,你可以按照以下格式设置acks参数:

# Kafka生产者配置
producer:bootstrap.servers: your-kafka-server:9092acks: all        # 设置acks参数为"all"key.serializer: org.apache.kafka.common.serialization.StringSerializervalue.serializer: org.apache.kafka.common.serialization.StringSerializer

消费者(Consumer)处理

        Kafka Consumer 默认会确保消息的至少一次传递(at least once delivery)。这意味着当 Consumer 完成对一条消息的处理后,会向 Kafka 提交消息的偏移量(offset),告知 Kafka 这条消息已被成功处理。如果 Consumer 在处理消息时发生错误,可以通过回滚偏移量来重试处理之前的消息。

以下是一些确保消息消费成功的方法:

  •  使用自动提交偏移量(Auto Commit Offsets)
  • 手动提交偏移量(Manual Commit Offsets)
  • 设置消费者的最大重试次数:
  • 设置适当的消费者参数

尽管 Kafka 提供了可靠的消息传递机制,但仍然需要在消费者端实现适当的错误处理和重试逻辑,以处理可能发生的错误情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25310.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI炒股:用Kimi获取美股的历史成交价格并画出股价走势图

在Kimi中输入提示词&#xff1a; 你是一个Python编程专家&#xff0c;要完成一个编写Python脚本的任务&#xff0c;具体步骤如下&#xff1a; 用akshare库获取谷歌(股票代码&#xff1a;105.GOOG)、亚马逊(股票代码&#xff1a;105.AMZN )、苹果(股票代码&#xff1a;105.AAP…

明天15点!如何打好重保预防针:迎战HVV经验分享

在当今数字化时代&#xff0c;网络攻击日益猖獗&#xff0c;各行各业面临的网络安全威胁不断升级。从钓鱼邮件到复杂的APT攻击&#xff0c;网络犯罪分子的手法层出不穷&#xff0c;给各行各业的信息安全带来了前所未有的挑战。 在这样的背景下&#xff0c;"HVV行动"应…

6月7号作业

1&#xff0c; 搭建一个货币的场景&#xff0c;创建一个名为 RMB 的类&#xff0c;该类具有整型私有成员变量 yuan&#xff08;元&#xff09;、jiao&#xff08;角&#xff09;和 fen&#xff08;分&#xff09;&#xff0c;并且具有以下功能&#xff1a; (1)重载算术运算符…

2024年电子工程与自动化技术国际会议(ICEEAT 2024)

2024 International Conference on Electronic Engineering and Automation Technology 【1】大会信息 会议简称&#xff1a;ICEEAT 2024 大会地点&#xff1a;中国西安 审稿通知&#xff1a;投稿后2-3日内通知 【2】会议简介 2024年电子工程与自动化技术国际会议是聚焦电子…

OrangePi AIpro小试牛刀-目标检测(YoloV5s)

非常高兴参加本次香橙派AI Pro&#xff0c;香橙派联合华为昇腾打造的一款AI推理开发板评测活动&#xff0c;以前使用树莓派Raspberry Pi4B 8G版本&#xff0c;这次有幸使用国产嵌入式开发板。 一窥芳容 这款开发板搭载的芯片是和华为昇腾的Atlas 200I DK A2同款的处理器&#…

Vue3中的常见组件通信之$attrs

Vue3中的常见组件通信之$attrs 概述 ​ 在vue3中常见的组件通信有props、mitt、v-model、 r e f s 、 refs、 refs、parent、provide、inject、pinia、slot等。不同的组件关系用不同的传递方式。常见的撘配形式如下表所示。 组件关系传递方式父传子1. props2. v-model3. $re…

[Linux]内网穿透nps

文章目录 基础文件下载项目地址下载地址 客户端安装解压文件客户端启动客户端注册到linux系统服务客户端注册到windows系统服务windows bat 一键管理员注册windows bat 一键管理员取消 基础文件下载 项目地址 https://github.com/ehang-io/nps 下载地址 Releases ehang-io…

微服务第二轮

学习文档 背景 由于每个微服务都有不同的地址或端口&#xff0c;入口不同 请求不同数据时要访问不同的入口&#xff0c;需要维护多个入口地址&#xff0c;麻烦 前端无法调用nacos&#xff0c;无法实时更新服务列表 单体架构时我们只需要完成一次用户登录、身份校验&#xff…

想在VBA软件中做个登录验证会员授权,用什么云服务器好?

想在VBA中做个登录验证会员授权&#xff0c;用什么服务器好&#xff1f; 腾讯云99起&#xff0c;百度云50元起&#xff0c;不过也不知道到底是一整个虚拟机服务器&#xff0c; 装了WIN2012系统的&#xff0c;还是只是一个虚拟网站只给你一个文件夹可以上传PHP,ASP网页后台。 价…

6、组件通信详解(父子、兄弟、祖孙)

一、父传子 1、props 用法&#xff1a; &#xff08;1&#xff09;父组件用 props绑定数据&#xff0c;表示为 v-bind:props"数据" &#xff08;v-bind:简写为 : &#xff0c;props可以任意命名&#xff09; &#xff08;2&#xff09;子组件用 defineProps([props&…

Java 编译报错:找不到符号? 手把手教你排查解决!

Java 编译报错&#xff1a;找不到符号&#xff1f; 手把手教你排查解决&#xff01; 在 Java 开发过程中&#xff0c;我们经常会遇到编译器抛出 "找不到符号" 错误。这个错误提示意味着编译器无法在它所理解的范围内找到你所引用的类、变量或方法。这篇文章将带你一步…

一文学习yolov5 实例分割:从训练到部署

一文学习yolov5 实例分割&#xff1a;从训练到部署 1.模型介绍1.1 YOLOv5结构1.2 YOLOv5 推理时间 2.构建数据集2.1 使用labelme标注数据集2.2 生成coco格式label2.3 coco格式转yolo格式 3.训练3.1 整理数据集3.2 修改配置文件3.3 执行代码进行训练 4.使用OpenCV进行c部署参考文…

手写kNN算法的实现-用欧几里德空间来度量距离

kNN的算法思路&#xff1a;找K个离预测点最近的点&#xff0c;然后让它们进行投票决定预测点的类型。 step 1: kNN存储样本点的特征数据和标签数据step 2: 计算预测点到所有样本点的距离&#xff0c;关于这个距离&#xff0c;我们用欧几里德距离来度量&#xff08;其实还有很多…

苍穹外卖笔记-07-菜品管理-增加、删除、修改、查询分页还有菜品起售或停售状态

菜品管理 1 新增菜品1.1 需求分析与设计1.2 代码开发文件上传新增菜品实现 1.3 功能测试 2 菜品分页查询2.1 需求分析和设计2.2 代码开发设计DTO类设计VO类Controller层Service层Mapper层 2.3 功能测试 3 删除菜品3.1 需求分析和设计3.2 代码开发Controller层Service层Mapper层…

机器学习——卷积神经网络

卷积神经网络CNN 多层感知机MLP的层数足够&#xff0c;理论上可以用其提取出二位特征&#xff0c;但是毕竟复杂&#xff0c;卷积神经网络就可以更合适的来提取高维的特征。 而卷积其实是一种运算 二维离散卷积的公式 可以看成g是一个图像的像素点&#xff0c;f是每个像素点对…

【计网复习】应用层总结(不含HTTP和错题重点解析)

应用层总结&#xff08;不含HTTP和错题重点解析&#xff09; 应用层简介 应用层的主要功能常见的应用层协议小林对于应用层通常的解释 网络应用模型 客户端-服务器模型&#xff08;Client-Server Model, C/S&#xff09; 特点优点缺点应用场景 对等网络模型&#xff08;Peer-to…

IO流字符流(FileReader与FileWriter)

目录 FileReader 空参read方法 带参read方法&#x1f447; FileWriter void write(intc) 写出一个字符 void write(string str) 写出一个字符串 void write(string str,int off,int len) 写出一个字符串的一部分 void write(char[] cbuf) …

备战 清华大学 上机编程考试-冲刺前50%,倒数第5天

T1&#xff1a;多项式求和 小K最近刚刚习得了一种非常酷炫的多项式求和技巧&#xff0c;可以对某几类特殊的多项式进行运算。非常不幸的是&#xff0c;小K发现老师在布置作业时抄错了数据&#xff0c;导致一道题并不能用刚学的方法来解&#xff0c;于是希望你能帮忙写一个程序…

C语言 树与二叉树基础部分

树与二叉树基础部分 树的基础概念二叉树的性质二叉树的遍历前序遍历中序遍历后序遍历层序遍历根据遍历结果恢复二叉树 二叉树的创建第一种第二种 二叉树的其他典型操作查找指定元素&#xff08;一般二叉树&#xff09;二叉树的高度&#xff08;深度&#xff09;二叉树的拷贝二叉…

!力扣102. 二叉树的层序遍历

给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,20],[15,7]] /*** Definition for…