【机器学习】机器学习与医疗健康在智能诊疗中的融合应用与性能优化新探索

文章目录

    • 引言
    • 机器学习与医疗健康的基本概念
      • 机器学习概述
        • 监督学习
        • 无监督学习
        • 强化学习
      • 医疗健康概述
        • 疾病预测
        • 诊断辅助
        • 个性化治疗方案制定
    • 机器学习与医疗健康的融合应用
      • 实时健康监测
        • 数据预处理
        • 特征工程
      • 疾病预测与优化
        • 模型训练
        • 模型评估
      • 诊断辅助与优化
        • 深度学习应用
      • 个性化治疗方案制定与优化
        • 强化学习应用
    • 性能优化
      • 模型压缩与优化
      • 分布式训练
      • 高效推理
    • 案例研究
      • IBM Watson Health
        • 推荐算法
        • 个性化推荐
      • 谷歌DeepMind Health
        • 诊断辅助算法
        • 智能诊疗优化
    • 未来展望
      • 跨领域应用
      • 智能化系统
      • 人工智能伦理
      • 技术创新
    • 结论

引言

随着科技的进步和医疗需求的增长,医疗健康领域正经历着前所未有的变革。机器学习作为一种强大的数据分析工具,能够显著提升医疗健康领域的诊疗效率和质量。通过融合机器学习与医疗健康技术,智能诊疗系统能够实现疾病预测、诊断辅助、个性化治疗方案制定等功能,从而提升患者的治疗效果和生活质量。本文将探讨机器学习与医疗健康在智能诊疗中的融合应用,并重点讨论性能优化的新方法和新探索。
在这里插入图片描述

机器学习与医疗健康的基本概念

机器学习概述

机器学习是一种通过数据训练模型,并利用模型对新数据进行预测和决策的技术。其基本思想是让计算机通过样本数据学习规律,而不是通过明确的编程指令。根据学习的类型,机器学习可以分为监督学习、无监督学习和强化学习。

监督学习

监督学习是通过带标签的数据集训练模型,使其能够对新数据进行分类或回归预测。常见的算法包括线性回归、逻辑回归、支持向量机、决策树和神经网络等。

无监督学习

无监督学习是在没有标签的数据集上进行训练,主要用于数据聚类和降维。常见的算法包括K-means聚类、层次聚类和主成分分析(PCA)等。

强化学习

强化学习是一种通过与环境交互学习最优行为策略的技术。智能体通过试错法在环境中学习,以最大化累积奖励。常见的算法包括Q-learning、深度Q网络(DQN)和策略梯度方法等。

医疗健康概述

医疗健康是指通过预防、诊断、治疗和康复等手段,维护和促进人类健康的过程。智能诊疗系统是医疗健康领域的重要应用之一,通过集成先进的技术和数据分析方法,智能诊疗系统能够实现高效、准确的医疗服务。

疾病预测

疾病预测是智能诊疗系统的重要功能之一。通过分析患者的历史健康数据和相关因素,机器学习模型能够预测疾病的发生概率,为早期干预和预防提供依据。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier# 示例疾病预测数据
data = {'age': [25, 45, 35, 50],'bmi': [22.5, 27.8, 24.0, 30.5],'smoking': [0, 1, 0, 1],'disease': [0, 1, 0, 1]
}df = pd.DataFrame(data)# 数据集拆分
X = df[['age', 'bmi', 'smoking']]
y = df['disease']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 模型训练
model = RandomForestClassifier()
model.fit(X_train, y_train)# 模型预测
predictions = model.predict(X_test)
print(predictions)
诊断辅助

诊断辅助是智能诊疗系统的重要组成部分。通过分析患者的症状和体征,机器学习模型能够辅助医生进行疾病诊断,提高诊断的准确性和效率。

import numpy as np
from sklearn.tree import DecisionTreeClassifier# 示例诊断辅助数据
data = {'symptom1': [1, 0, 1, 0],'symptom2': [0, 1, 0, 1],'symptom3': [1, 1, 0, 0],'diagnosis': [1, 0, 1, 0]
}df = pd.DataFrame(data)# 数据集拆分
X = df[['symptom1', 'symptom2', 'symptom3']]
y = df['diagnosis']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 模型训练
model = DecisionTreeClassifier()
model.fit(X_train, y_train)# 模型预测
predictions = model.predict(X_test)
print(predictions)
个性化治疗方案制定

个性化治疗方案制定是智能诊疗系统的关键功能之一。通过分析患者的个体特征和病情,机器学习模型能够推荐最适合患者的治疗方案,提高治疗效果和患者满意度。

import pandas as pd
from sklearn.neighbors import KNeighborsClassifier# 示例治疗方案数据
data = {'age': [25, 45, 35, 50],'bmi': [22.5, 27.8, 24.0, 30.5],'condition': [0, 1, 0, 1],'treatment': [0, 1, 0, 1]
}df = pd.DataFrame(data)# 数据集拆分
X = df[['age', 'bmi', 'condition']]
y = df['treatment']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 模型训练
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)# 模型预测
predictions = model.predict(X_test)
print(predictions)

在这里插入图片描述

机器学习与医疗健康的融合应用

实时健康监测

实时健康监测是智能诊疗系统的基础。通过对实时健康数据的采集、处理和分析,可以提供准确的健康信息,为医疗健康管理提供支持。

数据预处理

在实时健康监测中,数据预处理是关键的一步。通过对原始数据进行清洗、转换和特征工程,可以提高模型的准确性和稳定性。

import pandas as pd
from sklearn.preprocessing import StandardScaler# 示例健康监测数据
data = {'timestamp': ['2023-01-01 08:00', '2023-01-01 08:05', '2023-01-01 08:10', '2023-01-01 08:15'],'heart_rate': [72, 75, 70, 68],'blood_pressure': [120, 125, 118, 115]
}df = pd.DataFrame(data)# 数据预处理
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['hour'] = df['timestamp'].dt.hour
df['minute'] = df['timestamp'].dt.minutefeatures = df[['hour', 'minute', 'heart_rate', 'blood_pressure']]
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)print(scaled_features)
特征工程

特征工程是从原始数据中提取有用特征的过程。在健康监测数据分析中,常见的特征包括时间特征、生理特征和环境特征等。

# 示例特征工程
df['heart_rate_variability'] = df['heart_rate'].rolling(window=2).std()
print(df[['hour', 'minute', 'heart_rate_variability']])

疾病预测与优化

在智能诊疗系统中,疾病预测与优化是核心环节。通过训练和评估模型,可以实现疾病的准确预测和优化管理。

模型训练

在疾病预测中,常用的模型训练方法包括时间序列分析、回归模型和深度学习等。

from statsmodels.tsa.arima_model import ARIMA# 示例时间序列数据
heart_rate = df['heart_rate'].values# 时间序列模型训练
model = ARIMA(heart_rate, order=(1, 1, 1))
model_fit = model.fit(disp=False)# 模型预测
predictions = model_fit.predict(len(heart_rate), len(heart_rate)+3, typ='levels')
print(predictions)
模型评估

模型评估是验证模型性能的重要步骤。常见的评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等。

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score# 模型评估
rmse = mean_squared_error(y_test, predictions, squared=False)
mae = mean_absolute_error(y_test, predictions)
r2 = r2_score(y_test, predictions)print(f'RMSE: {rmse}, MAE: {mae}, R²: {r2}')

诊断辅助与优化

诊断辅助是通过机器学习模型,分析患者的症状和体征,辅助医生进行疾病诊断,提高诊断的准确性和效率。

深度学习应用

深度学习在诊断辅助中具有广泛的应用。通过卷积神经网络(CNN),可以实现医学影像的高精度检测和分析。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvisionimport datasets, transforms# 示例数据预处理
transform = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])trainset = datasets.FakeData(transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)# 定义卷积神经网络
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 6, 3)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 3)self.fc1 = nn.Linear(16 * 6 * 6, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 2)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 6 * 6)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x# 模型训练
net = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)for epoch in range(2):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = dataoptimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 2000 == 1999:print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 2000}')running_loss = 0.0print('Finished Training')

在这里插入图片描述

个性化治疗方案制定与优化

个性化治疗方案制定是通过机器学习模型,分析患者的个体特征和病情,推荐最适合患者的治疗方案,提高治疗效果和患者满意度。

强化学习应用

强化学习是一种在个性化治疗方案制定中广泛应用的技术。通过与环境交互,强化学习算法能够学习最优的治疗策略。

import numpy as np
import gym
from stable_baselines3 import PPO# 创建个性化治疗环境
env = gym.make('PersonalizedTreatment-v0')# 强化学习模型训练
model = PPO('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)# 模型评估
obs = env.reset()
for _ in range(1000):action, _states = model.predict(obs)obs, rewards, done, info = env.step(action)if done:obs = env.reset()env.close()

性能优化

模型压缩与优化

模型压缩是通过减少模型参数量和计算量,提高模型运行效率的技术。常见的方法包括权重剪枝、量化和知识蒸馏等。

# 示例权重剪枝
import torch
import torch.nn.utils.prune as prunemodel = CNN()
parameters_to_prune = [(module, 'weight') for module in model.modules() if isinstance(module, nn.Conv2d)]for module, param in parameters_to_prune:prune.l1_unstructured(module, name=param, amount=0.2)# Remove pruning reparameterization to enable inference
for module, param in parameters_to_prune:prune.remove(module, param)

分布式训练

分布式训练是通过多节点并行计算,加速大规模数据集和复杂模型训练的技术。常见的方法包括数据并行和模型并行。

# 示例数据并行
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDPdist.init_process_group(backend='nccl')
model = CNN().cuda()
ddp_model = DDP(model)
optimizer = optim.SGD(ddp_model.parameters(), lr=0.01)for epoch in range(10):for inputs, labels in trainloader:inputs, labels = inputs.cuda(), labels.cuda()optimizer.zero_grad()outputs = ddp_model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()

高效推理

高效推理是通过优化推理过程,提高模型响应速度的技术。常见的方法包括模型裁剪、缓存机制和专用硬件。

# 示例缓存机制
import torch
import torch.nn as nnclass CachedModel(nn.Module):def __init__(self, model):super(CachedModel, self).__init__()self.model = modelself.cache = {}def forward(self, x):x_tuple = tuple(x.view(-1).tolist())if x_tuple in self.cache:return self.cache[x_tuple]output = self.model(x)self.cache[x_tuple] = outputreturn outputmodel = CNN()
cached_model = CachedModel(model)input_tensor = torch.randn(1, 3, 32, 32)
output = cached_model(input_tensor)
print(output)

在这里插入图片描述

案例研究

IBM Watson Health

IBM Watson Health通过其智能诊疗系统,利用机器学习技术实时分析和预测疾病,为医疗机构提供高效、准确的医疗服务。

推荐算法

IBM Watson Health的智能诊疗系统采用了一系列先进的推荐算法,包括回归模型、深度学习和强化学习。通过不断优化算法,IBM Watson Health的智能诊疗系统能够提供高质量和智能化的医疗健康管理解决方案。

from statsmodels.tsa.arima_model import ARIMA# 示例时间序列数据
heart_rate = df['heart_rate'].values# 时间序列模型训练
model = ARIMA(heart_rate, order=(1, 1, 1))
model_fit = model.fit(disp=False)# 模型预测
predictions = model_fit.predict(len(heart_rate), len(heart_rate)+3, typ='levels')
print(predictions)
个性化推荐

IBM Watson Health的智能诊疗系统通过分析患者的健康数据,向医疗机构提供个性化的诊疗建议。例如,当系统检测到某一患者的健康指标异常时,会根据历史数据和实时数据,推荐最佳的治疗方案,提高治疗效果。

# 示例个性化推荐
def personalized_treatment_recommendation(patient_id, health_data, model):patient_data = health_data[health_data['patient_id'] == patient_id]predictions = model.predict(patient_data)return predictionspatient_id = 1
recommendations = personalized_treatment_recommendation(patient_id, df, model_fit)
print(f'Recommendations for patient {patient_id}: {recommendations}')

谷歌DeepMind Health

谷歌DeepMind Health通过其智能诊疗系统,利用机器学习和深度学习技术,实现高效、准确的医疗诊断和治疗,提高患者的治疗效果和生活质量。

诊断辅助算法

谷歌DeepMind Health的智能诊疗系统采用了一系列先进的诊断辅助算法,包括卷积神经网络、强化学习和多传感器融合。通过不断优化算法,谷歌DeepMind Health的智能诊疗系统能够提供高质量和智能化的医疗诊断解决方案。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms# 示例数据预处理
transform = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])trainset = datasets.FakeData(transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)# 定义卷积神经网络
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 6, 3)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 3)self.fc1 = nn.Linear(16 * 6 * 6, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 2)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 6 * 6)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x# 模型训练
net = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)for epoch in range(2):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = dataoptimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 2000 == 1999:print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 2000}')running_loss = 0.0print('Finished Training')
智能诊疗优化

谷歌DeepMind Health的智能诊疗系统通过实时分析和优化医疗数据,提高诊断准确性和治疗效果。例如,当系统检测到潜在的疾病风险时,会自动推荐进一步的检查和治疗方案,确保患者的健康。

# 示例智能诊疗优化
def treatment_optimization(patient_data, model):predictions = model.predict(patient_data)optimized_treatment = predictions * 0.9  # 假设的优化系数return optimized_treatmentpatient_data = np.array([72, 120, 1])  # 示例患者数据
optimized_treatment = treatment_optimization(patient_data, model_fit)
print(f'Optimized treatment: {optimized_treatment}')

在这里插入图片描述

未来展望

跨领域应用

随着智能诊疗技术的不断发展和优化,其应用领域将进一步拓展。未来,智能诊疗将在医疗、养老、康复等领域发挥更大的作用,为各行各业带来深远的影响和变革。

智能化系统

未来的智能化系统将更加依赖于智能诊疗技术的支持。通过将智能诊疗技术应用于智能医院、智能养老和智慧城市等领域,可以实现更加高效、智能和自动化的系统,提高医疗服务质量和生活质量。

人工智能伦理

随着智能诊疗技术的广泛应用,人工智能伦理问题将变得更加重要。如何确保智能诊疗系统的公平性、透明性和可解释性,如何保护患者隐私,如何防止智能诊疗技术被滥用,将是未来需要重点关注的问题。

技术创新

未来,机器学习和智能诊疗领域将继续涌现出新的技术创新。新型神经网络架构、更加高效的训练算法、更智能的优化技术等,将推动智能诊疗技术的性能进一步提升,开创更多的应用场景和可能性。

结论

机器学习与医疗健康的融合应用在智能诊疗中展现了巨大的潜力和前景。通过对机器学习和医疗健康技术的深入理解和研究,结合实际应用中的需求,开发者可以构建出高性能、智能化的诊疗系统,实现疾病预测、诊断辅助、个性化治疗方案制定等功能。在实际应用中,通过模型压缩、分布式训练和高效推理等性能优化技术,可以进一步提升智能诊疗系统的应用效率和性能。未来,随着技术的不断创新和发展,机器学习与智能诊疗的融合应用将为医疗健康领域带来更多的机遇和挑战。希望本文能够为开发者提供有价值的参考和指导,推动机器学习与智能诊疗在医疗健康中的持续发展和应用。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/24957.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

接口自动化Requests+Pytest基础实现

目录 1. 数据库以及数据库操作1.1 概念1.2 分类1.3 作用 2 python操作数据库的相关实现2.1 背景2.2 相关实现 3. pymysql基础3.1 整个流程3.2 案例3.3 Pymysql工具类封装 4 事务4.1 案例4.2 事务概念4.3 事务特征 5. requests库5.1 概念5.2 角色定位5.3 安装5.4 校验5.5 reques…

“中新美”三重身份,能帮SHEIN解决上市问题吗?

一家公司的海外上市之路能有多复杂?辗转多地的SHEIN,可能是当前最有话语权回答这个问题的公司。最近,它又有了新消息。 在上市信息多次更改后,伦敦正在成为SHEIN最有可能的“着陆”点。巴伦周刊援引英国天空新闻报道称&#xff0…

Python01 -分解整包数据到各个变量操作和生成器

Python 的星号表达式可以用来解决这个问题。比如,你在学习一门课程,在学期末的时候,你想统计下家庭作业的平均成绩,但是排除掉第一个和最后一个分数。如果只有四个分数,你可能就直接去简单的手动赋值,但如果…

5、搭建前端项目

5.1 使用vite vue搭建 win r 打开终端 切换到你想要搭建的盘 npm init vitelatest跟着以下步骤取名即可 cd fullStackBlognpm installnpm run dev默认在 http://localhost:5173/ 下启动了 5.2 用vscode打开项目并安装需要的插件 1、删除多余的 HelloWorld.vue 文件 2、安装…

【Vue3】理解toRef() 和 toRefs()

历史小剧场 知道可能面对的困难和痛苦,在死亡的恐惧中不断挣扎,却仍然能战胜自己,选择这条道路,这才是真正的勇气。----《明朝那些事儿》 前言 toRef 和 toRefs 是Vue3中的响应式转换工具函数 toRef: 不影响源对象的情况下&#x…

【数据结构】AVLTree实现详解

目录 一.什么是AVLTree 二.AVLTree的实现 1.树结点的定义 2.类的定义 3.插入结点 ①按二叉搜索树规则插入结点 ②更新平衡因子 更新平衡因子情况分析 ③判断是否要旋转 左单旋 右单旋 左右单旋 右左双旋 4.删除、查找和修改函数 查找结点 三.测试 1.判断是否是搜索树 …

面试题-Vue2和Vue3的区别

文章目录 1. 响应式系统2. 组合式 API (Composition API)3. Fragment (碎片)4. Teleport (传送门) 5. 性能改进6. 移除或改变的功能7. 构建工具8. TypeScript 支持 Vue 2 和 Vue 3 之间存在许多重要的区别,这些区别涵盖了性能、API 设计、组合式 API(Com…

AndroidStudio无法识别连接夜神模拟器

方法一(无法从根本上解决) ①进入夜神模拟器安装路径下的bin路径(安装路径可以带有中文路径) ②打开cmd窗口,输入以下代码(一定要打开模拟器) nox_adb.exe connect 127.0.0.1:62001 方法二(根本上解决) 原因:Android Studio的adb版本与夜神模拟器的adb版本不一致 ①打开And…

技术架构的发展

技术架构的演进 主要方向: ​ 1.提高单位时间内的吞吐量,提高并发度; ​ 2.对应用服务代码进行解耦合,使得开发效率得到提高; ​ 3.运维成本降低; ​ 4.成本降低,如购买云厂商资源&#xf…

Cortex-M7——NVIC

Cortex-M7——NVIC 小狼http://blog.csdn.net/xiaolangyangyang 一、NVIC架构 二、中断及异常编号 三、中断屏蔽寄存器(__disable_irq和__enable_irq操作的是PRIMASK寄存器) 四、中断分组寄存器(SCB->AIRCR[10:8]) 五、NVIC寄…

常用的Linux命令,linux下文件的读、写、打开、关闭append用法

vim demoq.c打开写的.c文件 内容为 按a可以编辑页面代码。按ESC退出编辑然后按shift:wq保存文件并退出 Linux 系统中采用三位十进制数表示权限,如0755, 0644.7 124(可读、可写、可执行) 5 14(可读、不可写、可执行) …

苹果手机微信如何直接打印文件

在快节奏的工作和生活中,打印文件的需求无处不在。但你是否曾经遇到过这样的困扰:打印店价格高昂,让你望而却步?今天,我要给大家介绍一款神奇的微信小程序——琢贝云打印,让你的苹果手机微信直接变身移动打…

Docker配置Redis集群以及主从扩容与缩容

基础镜像拉取 docker run -p 6379:6379 -d redis:6.0.8 配置文件以及数据卷挂载 # 开启密码验证(可选) requirepass 1234 # 允许redis外地连接,需要注释掉绑定的IP # bind 127.0.0.1 # 关闭保护模式(可选) protected-m…

6.18云服务器大促盘点,错过一次,再等一年!

随着云计算技术的飞速发展,云服务器已成为企业和个人构建和扩展在线业务的首选平台。特别是在大型促销活动如618年中大促期间,云服务提供商纷纷推出极具吸引力的优惠,以降低用户上云的门槛。以下是对当前市场上几个主流云服务提供商的优惠活动…

德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第六周) - 预训练模型

预训练模型 1. 预训练模型介绍 1.1. ELMo1.2. GPT1.3. BERT 2. Seq2Seq 2.1. T52.2. BART 3. Tokenization 1. 预训练模型介绍 在预训练语言模型出现之前,统计语言模型(如N-gram模型)是主流方法。这些模型利用统计方法来预测文本中的下一个…

设计模式-外观(门面)模式(结构型)

外观模式 外观模式又称门面模式(结构型模式),它是一个可以屏蔽系统复杂性的设计模式。俗话说没有什么问题是加一层“介质”解决不了的,如果有那就在加一层。在开发过程中肯定封装过Utils类,我认为这就是一种门面模式&…

亘古真知

目录 一,概述 二,个人面板 三,科技面板 四,手牌 五,回合 1,行动 (1)打造 (2)学习 (3)归档 (4)挖掘 …

Java——数组排序和查找

一、排序介绍 1、排序的概念 排序是将多个数据按照指定的顺序进行排列的过程。 2、排序的种类 排序可以分为两大类:内部排序和外部排序。 3、内部排序和外部排序 1)内部排序 内部排序是指数据在内存中进行排序,适用于数据量较小的情况…

【SQLAlChemy】如何连接数据库?

使用SQLAlChemy连接数据库 导入包 首先,导入创建数据库引擎的包。 from sqlalchemy import create_engine编写数据库配置 SQLALCHEMY_DATABASE_URL "mysql://root:123456789127.0.0.1:3306/tortoise"字段解释: mysql::这是数…

持续警惕火灾风险:学校可燃气体报警器的定期校准检验

可燃气体报警器在学校中的安装、检验和校准对于保护师生生命安全至关重要。 接下来,佰德将探讨可燃气体报警器在学校中的必要性,以及相关实际案例和数据,为您呈现一个安全的学习环境。 一、学校安全不能掉以轻心 学校是培养未来的摇篮&…