我们如何收到卫星信号?(导航电文,载波与测距码)

卫星信号

在介绍所有卫星信号之前,首先要明确一些概念:

所有的卫星信号,都是一段电磁波,用户接收的,也是一段电磁波。

但是我们认知中的电磁波,就是一段波,就像我们打出去的交一样,怎么通过这一段波来转换成有用的数据呢?

首先,卫星发射信号的是计算机,接收机也是计算机,卫星发出信号,我们接收信号,接收的都是一段二进制01码,然后把01码进行转换。因为卫星不可能直接发出一串文字,而计算机就算接收到了这串文字,也无法看懂,所以计算机之间的交互很默契地都采用二进制码来交互。

因此,我们接收信号,方法就是将电磁波转换为二进制序列。但是怎么转换?转换方法就多了,我们可以:

  • 电磁波高波峰表示1,低波峰表示0
  • 电磁波正波表示1,负波表示0,曼波out

具体的实现方案,我们就不需要深究,也不是我们需要管的事,我们只用知道:卫星发出和我们接收的信号都是电磁波,最终转换为的形式为二进制序列。

而因为电磁波可以转化成二进制码,我们可以重新用码的特性去定义卫星信号的一些特性:

  1. 码元:二进制序列中每一个二进制数称为一个码元
  2. 码元宽度:每个码元持续时间或其对应的距离成为码元宽度
  3. 码速率:码发生器每秒输出的码元个数 

卫星信号分为三种:载波,测距码与导航电文

测距码

测距码是用来测距的一串码序列,最终他的形式也是可以转换成01的。测距码最大的特性,也就是他定位的原理,便是他采用的是一段伪随机码。什么是伪随机?

就如同我们在编程语言中涉及到的获得伪随机数与设定种子一样:

伪随机数列是一个数组:


对每一个数组中的元素,都有一个固定的算法:

比如:第一空的算法为f(x)=x^2+5x

我们在给定种子为x=2的时候,第一个空的数据就是f(2)=14

同理,一直填满所有的空

而当我们想取随机数的时候,就按顺序依次从这个数组里取,

比如我们在玩掷硬币,假设为奇数是正面,偶数是反面

那么第一次掷硬币,我们取第一个元素,14,为反面

第二次掷硬币,我们取第二个元素,g(2)

过了很长时间,我们再掷第三次硬币,只要我们不重新设置种子,还是从上一次的位置开始往下取,即取第三个元素h(2)

也就是说,只要种子确定了,我们就能把这个序列给推算出来。但是,因为随机数组对于不同种子是完全不同的,所以我们可以近似认为他是随机的,也便是可以预测的随机:伪随机。而用这个特性,我们可以得到两个结论:

  1. 知道卫星产生随机序列的种子,我们可以在接收机端产生一段一模一样的序列
  2. 因为序列是随机产生的,对不同种子,序列完全不同,而且就算一个相同的序列,如果没有对齐(即第一个数组以a[0]为起点,第二个数组以a[2]为起点),所以序列的自相关性极强
    (自相关性是指,两个序列的重合程度)

导航电文

导航电文,导航电文是一串比较特殊的序列,他又叫做数据码,作用是传递一些与定位有关的数据和卫星状态。导航电文搭载的信息就比较格式化,

  • 导航电文的传输速率为为50b/s,也就是每秒传输50个二进制码
  • 一个完整的导航电文信息为1500b,为一个主帧,所以发送完一个主帧需要1500/50=30秒
  • 一个主帧分为5个子帧,每个子帧含1500/5=300b
  • 一个子帧有10个字,每个字30b

也就是,一个导航电文被分为了很多很多小块,系统地来分便是5个子帧,50个字,每个字代表着一个信息。我们知道,一个int类型为4子节32个bit,而一个字30个bit,也就是一个字刚好能表示一个数,这也是导航电文的分块——分成了一块又一块的数字。

但是,导航电文的数据非常多,用50个字没有办法全部表示完。怎么办?所以我们不得不用两串完整的导航电文去表示一个定位数据,也就是用100个字来表示,还不够就150个,200个。

而在实际实现的过程中,采用的是25串完整的导航电文,去表示一个导航数据,其中:

  • 对一串完整的导航电文,前三个子帧播发卫星的基本数据,如时间等。这些是不会变的,25串导航电文一直重复播发
  • 而后两个子帧,需要播发卫星的状态和定位数据,在25串导航电文里,轮流去表示这些数据。

也就是,前三个子帧是不会变的,一直重复播发,而后两个子帧则在25串电文,一共2*25=50个子帧中,将数据播发完整。

导航电文的更新频率是2个小时,也就是在两个小时之内一直会重复播发这25个主帧。

假设在12:00的时候更新,那么一直到14:00,导航电文会重复播发25个子帧,这25个子帧表示的状态都是12:00时刻时,卫星的运动状态和轨道参数。

载波

载波,翻译成人话,就是搭载信号的波,再通俗地说,就是信号波的交通工具。信号从外太空发射过来,会经历大气层,而在传输的过程中会有个特点:

  1. 如果波的频率过高,则电离层的延迟很严重,导致电离层误差过高
  2. 如果波的频率过低,则会被大气层严重吸收,导致信号的强度大大降低

所以采用适中频率的波——L波段无线电信号最合适。载波就是一个交通工具,如果直接用导航电文和测距码,那么要么频率过高要么频率过低,所以就要把导航电文和测距码与载波相调制,把导航电文和测距码调制到L波段上,减少误差。

载波一共有三个频率,

  1. 第一个频率负责搭载信号,
  2. 第二个频率用来采用差分的方法消除电离层延迟,
  3. 第三个频率来实现更多用以提升定位精度的功能 

卫星定位原理

测距码测量 

原理:测距码是一串伪随机码,只有码序列相同并且对齐,其相关系数才为1

所以,我们可以利用这一特性,在接收机上输入相同的种子,产生一段与卫星相同的伪随机序列

比如:

卫星发出的伪随机码是:abcdefghijk...
(卫星当然发出的是二进制码,但是这里为了更直观比对结果,举例就采用更直观的码序列)
那我们就用相同的种子,在接收机上也构建一段相同的码序列:abcdefghijk...

但是,当接收机接收到信号的时候,不可能是从起点abcd开始的,有可能出现下面的情况:

因为没有对齐,他们的相关系数是极低的。于是,我们就固定住接收到的卫星码,然后向后挪动接收机自己产生的码:

他们之间的差距由两个字母到了一个字母,但是还是没有对齐,相关系数还是很低,我们再挪动一下:

这个时候,计算相关系数,发现相关系数为1了,而且再读取计数器,发现挪动了两个码,所以计算机就知道了:

在一个码序列周期内,他们之间相差了两个码的距离

所以,就可以计算出,在一个码序列周期内,他们相差的时间为:

但是除此之外,他们还相差了很多个整周期T,这个整周期T因为码序列的长度是固定的,所以T一般来说也是固定的一个数,可以直接采用。

所以,信号的传输时间为:

然后再用最基础的L=V*t,就可以求出卫星到接收机之间的距离:

L=\Delta t*c 


载波测量

但是在高精度测量中,测距码的测量精度并不高。因为其精度求得的时间和码元的宽度强相关,如果码元过宽,对齐过于简单,那么最终的精度也会很低。但是,载波就像三角函数一样,是一段连续的波,我们可以采用这段连续的波,缩短他们的误差,来提高定位精度。

比如在途中,我们接收到的卫星信号是波峰的位置,我们就可以知道,卫星信号的相位是二分之Pi。但是,光知道这个二分之Pi,我们并无法进行定位,因为从卫星发出信号到接收机接收到信号,一定有以下几个部分:

用公式表示便是:

L=\Delta\varphi +(int)T ,前者为不满一整周期的相位,后者为整周期数,因为我们并不知道整周期数是多少,又叫他整周模糊度
但是,这个整周模糊度,我们怎么求出来?

我们在测距码定位的时候,就已经求出来了传播的时间,只不过,这个时间的精度不怎么高。
但是,就算再怎么不高,他也不可能相差一整个周期。所以,我们就采用这个测距码测量时得到的时间,逆推出整周模糊度的大小,然后就可以求出卫星到接收机的波长长度。

所以,可以认为,测距码测量的目的是确定整周的长度,而载波测量实际上是确定了不满一周的相位长度,提高了定位的精度。


导航电文测量

导航电文的测量,和前两个有着很大的不同。导航电文测量就不再用波进行测量,而是采用导航电文给出的数据进行解算。在导航电文的第二三子帧中,会给出GPS的轨道参数,而在卫星定位中,采用的卫星轨道描述方法为:开普勒轨道根数

在人工轨道理论中,用六个开普勒轨道根数来描述卫星椭圆轨道的形状,大小和在空间的指向,其包含以下六个参数:

  1.  升交点赤经
  2. 轨道倾角
  3. 长半径
  4. 偏心率
  5. 近地点角距
  6. 卫星过近地点的时刻

升交点赤经 

一般来说,卫星轨道和赤道会有两个交点,东边一个西边一个。卫星从赤道下也就是南半球,经过交点,进入赤道上北半球,这个交点叫做升交点,就像太阳升起;而另外一个叫做降交点,就像太阳落下。升交点的赤经,也就是天球下的经度,叫做升交点赤经。

轨道倾角 

在升交点处,轨道正方向(也就是卫星运动的方向)与赤道的正方向(赤经增加的方向) 的夹角。

长半径

轨道椭圆长轴的一半

偏心率

e=\frac{c}{a}=\frac{\sqrt{a^2-b^2}}{a}

近地点角距 

由地心(A),升交点(B),近地点(C)组成的角BAC就称为近地点角距 

而除了给出这几个参数以外,还会给出几个摄动参数。因为导航电文是2个小时更新一次,在两个小时之间,卫星已经运动出了一段距离。我们需要通过这些摄动参数,来模拟卫星的运动状态,从而求出卫星在任意时刻的位置,而非两个小时之前的位置。

具体的公式,可以看看具体代码实现的文章:

卫星位置解算icon-default.png?t=N7T8http://t.csdnimg.cn/iKBmL


最后,给自己叠个甲。因为自己才是导航工程大二的本科生,有些概念理解可能不到位,而又想用最容易理解的方式表达出来,所以可能正确性会稍微有些偏差。但是对初学者来说,应该不会存在太大的错误,如果可以帮到你,真的荣幸之极。还有,

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/22079.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【UML用户指南】-03-UML的14种图

目录 1、结构图 1、类图(class diagram) 2、对象图(object diagram) 3、构件图 (component diagram) 4、组合结构图 5、包图(package diagram) 6、部署图(deploym…

零基础入门学习Python第二阶04SQL详解03

MySQL 新特性 JSON类型 很多开发者在使用关系型数据库做数据持久化的时候,常常感到结构化的存储缺乏灵活性,因为必须事先设计好所有的列以及对应的数据类型。在业务发展和变化的过程中,如果需要修改表结构,这绝对是比较麻烦和难…

如何用TCC方案轻松实现分布式事务一致性

本文作者:小米,一个热爱技术分享的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号“软件求生”,获取更多技术干货! 哈喽,大家好!我是小米,一个热爱技术的活力小青年,今天要和大家分享的是一种在分布式系统中实现事务的一种经典方案——TCC(Try Confirm Canc…

【Ubuntu】超详细安装Ubuntu系统

鉴于有些小伙伴在安装Ubuntu系统的时候遇到很多问题,因此打算编写一篇记录一下安装Ubuntu系统的整个过程~互相学习! 一、制作U盘启动 准备一个大于8G以上的U盘,这里我使用的是16G的U盘下载UltraISO工具 网站地址:UltraISO准备Ub…

C++ Primer 第五版 第15章 面向对象程序设计

面向对象程序设计基于三个基本概念:数据抽象、继承和动态绑定。 继承和动态绑定对编写程序有两方面的影响:一是我们可以更容易地定义与其他类相似但不完全相同的新类;二是在使用这些彼此相似的类编写程序时,我们可以在一定程度上…

HTML静态网页成品作业(HTML+CSS)—— 金宝贝儿童教育机构介绍网页(2个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,未使用Javacsript代码,共有2个页面。 二、作品演示 三、代…

Stable diffusion prompts 使用语法、参数讲解、插件安装教程

Stable diffusion prompts 使用语法、参数讲解、插件安装教程 本文基于 Stable diffusion WebUI 进行讲解(安装在 AutoDL 上,安装在本地电脑上的也同样适用本教程)。 初始界面: 文件目录结构: 上图红框中的 4 个文件…

requests模块编写漏洞检测工具

#尝试使用python登录pikachu爆破模块 #发送post数据包,包含用户名密码,对接受到的响应进行判断,如何为登录成功 #爆破密码 with open(passwor.txt,r) as f: passwordf.readlines() for i in password: data {username: admin, password: i, …

数据结构——算法和算法效率的度量

目录 一、引言 二、算法 1 算法的基本概念 2 算法的复杂度 2.1 时间复杂度 2.1.1 概念 2.1.2 大O的渐进表示 3 算法的空间复杂度 3.1 概念 3.2 实例 4 实例分析 5 结论 一、引言 大家在写代码的时候有没有发现写同样功能的代码有多种不同的写法,而不同的代…

51种企业应用架构模式详解

01 什么是企业应用 我的职业生涯专注于企业应用,因此,这里所谈及的模式也都是关于企业应用的。(企业应用还有一些其他的说法,如“信息系统”或更早期的“数据处理”。)那么,这里的“企业应用”具体指的是什…

[原型资源分享]经典产品饿了么UI模版部件库

​部件库预览链接:https://f13gm0.axshare.com 支持版本: Axrure RP 8 文件大小: 3MB 文档内容介绍 基本部件:表单样式:12款、数据样式:10款、服务样式:6款、导航:5款、业务组件:7款、 模板…

MySQL之查询性能优化(三)

查询性能优化 重构查询的方式 在优化有问题的查询时,目标应该是找到一个更优的方法获得实际需要的记过——而不是一定总是需要从MySQL获取一模一样的结果集。有时候,可以将查询转换一种写法让其返回一样的结果,但是性能更好。但也可以通过修…

Python魔法之旅-魔法方法(14)

目录 一、概述 1、定义 2、作用 二、应用场景 1、构造和析构 2、操作符重载 3、字符串和表示 4、容器管理 5、可调用对象 6、上下文管理 7、属性访问和描述符 8、迭代器和生成器 9、数值类型 10、复制和序列化 11、自定义元类行为 12、自定义类行为 13、类型检…

【Python】pyinstaller打包时添加详细信息

在要被打包的py文件同级目录新建version.txt,写入以下内容 # UTF-8 # # For more details about fixed file info ffi see: # http://msdn.microsoft.com/en-us/library/aa381058.aspx # VSVersionInfo(ffiFixedFileInfo(filevers(1, 4, 0, 5),prodvers(1, 4, 0, 5…

AIGC 011-SAM第一个图像分割大模型-分割一切!

AIGC 011-SAM第一个图像分割大模型-分割一切! 文章目录 0 论文工作1论文方法2 效果 0 论文工作 这篇论文介绍了 Segment Anything (SA) 项目,这是一个全新的图像分割任务、模型和数据集。SA 项目是一个具有里程碑意义的工作,它为图像分割领域…

迎七一党史知识竞赛答题怎么做

迎七一党史知识竞赛答题,不仅是对于党史知识的检验,更是对于参赛者学习态度和综合能力的考量。在参与这类竞赛时,我们需要做好充分的准备,掌握一定的答题技巧,才能取得好的成绩。 首先,我们要深入了解竞赛…

FFmpeg播放器的相关概念【1】

播放器框架 相关术语 •容器/文件(Conainer/File):即特定格式的多媒体文件,比如mp4、flv、mkv等。 • 媒体流(Stream):表示时间轴上的一段连续数据,如一段声音数据、一段…

UFS Explorer Professional Recovery: 如何从启用了 mSATA 缓存的 Drobo 设备中恢复数据

天津鸿萌科贸发展有限公司是 UFS Explorer Professional Recovery 数据恢复软件的授权代理商。 UFS Explorer Professional Recovery 数据恢复软件提供综合性的解决方案,用于解决复杂的数据恢复案例,包括那些采用特殊存储技术的案例,或介质受…

上海亚商投顾:创业板指震荡收涨 超70家ST股跌停

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 沪指昨日震荡震荡,创业板指走势稍强,盘中一度涨超1%,黄白二线分化严重。算…

vue ts 导入 @/assets/ 红色显示的问题解决

vue ts 导入 /assets/ 红色显示的问题解决 一、问题描述 在使用的时候这样导入会出现如上的错误。 在使用的时候,导入的类型也没有对应的代码提示,说明导入有问题。 二、解决 在 tsconfig.json 中添加如下内容: {"compilerOptions&…