stm32标准库usart1,usrat2,usart3三个串口的配置以及printf重定向(串口输出)

        我刚开始学串口时,因为要用到多个串口,自己又懒得改,总是在网上要找半天。下面将stm32的三个串口配置罗列下来,方便大家直接copy。

1、串口1

引脚:TX:PA9;

           RX:PA10;

重定向函数:printf();

usart.c

#include "sys.h"
#include "usart.h"	  
// 	 
//如果使用ucos,则包括下面的头文件即可.
#if SYSTEM_SUPPORT_OS
#include "includes.h"					//ucos 使用	  
#endif//
//加入以下代码,支持printf函数,而不需要选择use MicroLIB	  
#if 1
#pragma import(__use_no_semihosting)             
//标准库需要的支持函数                 
struct __FILE 
{ int handle; }; FILE __stdout;       
//定义_sys_exit()以避免使用半主机模式    
void _sys_exit(int x) 
{ x = x; 
} 
//重定义fputc函数 
int fputc(int ch, FILE *f)
{      while((USART2->SR&0X40)==0);//循环发送,直到发送完毕   USART2->DR = (u8) ch;      return ch;
}
#endif #if EN_USART1_RX   //如果使能了接收
//串口1中断服务程序
//注意,读取USARTx->SR能避免莫名其妙的错误   	
u8 USART_RX_BUF[USART_REC_LEN];     //接收缓冲,最大USART_REC_LEN个字节.
//接收状态
//bit15,	接收完成标志
//bit14,	接收到0x0d
//bit13~0,	接收到的有效字节数目
u16 USART_RX_STA=0;       //接收状态标记	  void uart1_init(u32 bound){//GPIO端口设置GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE);	//使能USART1,GPIOA时钟//USART1_TX   GPIOA.9GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	//复用推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9//USART1_RX	  GPIOA.10初始化GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10  //Usart1 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;		//子优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器//USART 初始化设置USART_InitStructure.USART_BaudRate = bound;//串口波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式USART_Init(USART1, &USART_InitStructure); //初始化串口1USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断USART_Cmd(USART1, ENABLE);                    //使能串口1 }void USART1_IRQHandler(void)                	//串口1中断服务程序
{u8 Res;
#if SYSTEM_SUPPORT_OS 		//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.OSIntEnter();    
#endifif(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)  //接收中断(接收到的数据必须是0x0d 0x0a结尾){Res =USART_ReceiveData(USART1);	//读取接收到的数据if((USART_RX_STA&0x8000)==0)//接收未完成{if(USART_RX_STA&0x4000)//接收到了0x0d{if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始else USART_RX_STA|=0x8000;	//接收完成了 }else //还没收到0X0D{	if(Res==0x0d)USART_RX_STA|=0x4000;else{USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;USART_RX_STA++;if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收	  }		 }}   		 } 
#if SYSTEM_SUPPORT_OS 	//如果SYSTEM_SUPPORT_OS为真,则需要支持OS.OSIntExit();  											 
#endif
} 
#endif	

usart.h

#ifndef __USART_H
#define __USART_H
#include "stdio.h"	
#include "sys.h" #define USART_REC_LEN  			200  	//定义最大接收字节数 200
#define EN_USART1_RX 			1		//使能(1)/禁止(0)串口1接收extern u8  USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 
extern u16 USART_RX_STA;         		//接收状态标记	
//如果想串口中断接收,请不要注释以下宏定义
void uart1_init(u32 bound);
#endif

2、串口2

引脚:TX:PA2;

           RX:PA3;

重定向函数:u2_printf();

usart2.c

#include "sys.h"
#include "usart2.h"	  
#include <stdarg.h>
#include <string.h>u8 USART_RX_BUF2[USART_REC_LEN];
//接收状态
//bit15,	接收完成标志
//bit14,	接收到0x0d
//bit13~0,	接收到的有效字节数目
u16 USART_RX_STA2=0;       //接收状态标记	  void uart2_init(u32 bound){//GPIO端口设置GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);	//使能USART2时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);	//使能GPIOA时钟USART_DeInit(USART2);  //复位串口2//USART1_TX   GPIOA.2GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //PA.2GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	//复用推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.2//USART1_RX	  GPIOA.3初始化GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;//PA3GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.3 //Usart2 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2;  //抢占优先级2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;		//子优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器//USART 初始化设置USART_InitStructure.USART_BaudRate = bound;//串口波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式USART_Init(USART2, &USART_InitStructure); //初始化串口2USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启串口接受中断USART_Cmd(USART2, ENABLE);                    //使能串口2 }void USART2_IRQHandler(void)                	//串口2中断服务程序
{u8 Res;if(USART_GetITStatus(USART2, USART_IT_RXNE) != RESET)  //接收中断(接收到的数据必须是0x0d 0x0a结尾){Res =USART_ReceiveData(USART2);	//读取接收到的数据if((USART_RX_STA2&0x8000)==0)//接收未完成{if(USART_RX_STA2&0x4000)//接收到了0x0d{if(Res!=0x0a)USART_RX_STA2=0;//接收错误,重新开始else USART_RX_STA2|=0x8000;	//接收完成了 }else //还没收到0X0D{	if(Res==0x0d)USART_RX_STA2|=0x4000;else{USART_RX_BUF2[USART_RX_STA2&0X3FFF]=Res ;USART_RX_STA2++;if(USART_RX_STA2>(USART_REC_LEN-1))USART_RX_STA2=0;//接收数据错误,重新开始接收	  }		 }}   		 } }char UART2_TX_BUF[200];
void u2_printf(char* fmt, ...)    //无法列出传递函数的所有实参的类型和数目时,可以用省略号指定参数表
{u16 i, j;va_list ap;          //va_list 是一个字符指针,可以理解为指向当前参数的一个指针,取参必须通过这个指针进行。va_start(ap, fmt);   //va_start函数来获取参数列表中的参数,使用完毕后调用va_end()结束vsprintf((char*)UART2_TX_BUF, fmt, ap);	// 把生成的格式化的字符串存放在这里va_end(ap);i = strlen((const char*)UART2_TX_BUF);              //此次发送数据的长度for(j = 0; j < i; j++)                                                    //循环发送数据{while((USART2->SR & 0X40) == 0);                    //循环发送,直到发送完毕USART2->DR = UART2_TX_BUF[j];}
}

usart2.h

#ifndef __USART2_H
#define __USART2_H
#include "stdio.h"	
#include "sys.h" #define USART_REC_LEN  			200  	//定义最大接收字节数 200
#define EN_USART2_RX 			1		//使能(1)/禁止(0)串口1接收extern u8  USART_RX_BUF2[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 
extern u16 USART_RX_STA2;         		//接收状态标记	void uart2_init(u32 bound);
void u2_printf(char* fmt, ...);
#endif

3、串口3

引脚:TX:PB10;

           RX:PB11;

重定向函数:u3_printf();

usart3.c

#include "sys.h"
#include "usart3.h"
#include "stdarg.h"	 	 
#include "stdio.h"	 	 
#include "string.h"	
// 	 
//如果使用ucos,则包括下面的头文件即可.
#if SYSTEM_SUPPORT_OS
#include "includes.h"					//ucos 使用	  
#endif#if EN_USART3_RX
u8  USART3_RX_BUF[USART3_REC_LEN]; 	//接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 
u8  USART3_TX_BUF[USART3_SED_LEN]; 	//发送缓冲,最大USART3_SED_LEN个字节.末字节为换行符
u16 USART3_RX_STA = 0;         			//接收状态标记	void u3_printf(char* fmt,...)  
{  u16 i,j; va_list ap; va_start(ap,fmt);vsprintf((char*)USART3_TX_BUF,fmt,ap);va_end(ap);i=strlen((const char*)USART3_TX_BUF);		//此次发送数据的长度for(j=0;j<i;j++)							//循环发送数据{while(USART_GetFlagStatus(USART3,USART_FLAG_TC)==RESET); //循环发送,直到发送完毕   USART_SendData(USART3,USART3_TX_BUF[j]); } 
}void uart3_init(u32 bound)
{NVIC_InitTypeDef NVIC_InitStructure;GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);	// GPIOB时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE); //串口3时钟使能USART_DeInit(USART3);  //复位串口3//USART3_TX   PB10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //PB10GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	//复用推挽输出GPIO_Init(GPIOB, &GPIO_InitStructure); //初始化PB10//USART3_RX	  PB11GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入GPIO_Init(GPIOB, &GPIO_InitStructure);  //初始化PB11USART_InitStructure.USART_BaudRate = bound;//波特率一般设置为9600;USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式USART_Init(USART3, &USART_InitStructure); //初始化串口	3USART_Cmd(USART3, ENABLE);                    //使能串口 //使能接收中断USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);//开启中断   //设置中断优先级NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;		//子优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器USART3_RX_STA=0;		//清零
}void USART3_IRQHandler(void) // 串口3中断服务函数
{u8 res;if(USART_GetITStatus(USART3,USART_IT_RXNE)) // 中断标志{res= USART_ReceiveData(USART3);  // 串口3 接收if((USART3_RX_STA&0x8000)==0)//接收未完成{if(USART3_RX_STA&0x4000)//接收到了0x0d{if(res!=0x0a)USART3_RX_STA=0;//接收错误,重新开始else USART3_RX_STA|=0x8000;	//接收完成了 }else{ 							//还没收到0X0Dif(res==0x0d)USART3_RX_STA|=0x4000;else{USART3_RX_BUF[USART3_RX_STA&0X3FFF]=res ;USART3_RX_STA++;if(USART3_RX_STA>(USART3_REC_LEN-1))USART3_RX_STA=0;//接收数据错误,重新开始接收	  }		 }} }
}#endif

usart3.h

#ifndef __USART3_H
#define __USART3_H
#include "stdio.h"	
#include "sys.h" #define USART3_REC_LEN  			200  	//定义最大接收字节数 200
#define USART3_SED_LEN  			200  	//定义最大发送字节数 200
#define EN_USART3_RX 			1			//使能(1)/禁止(0)串口3接收
extern u8  USART3_RX_BUF[USART3_REC_LEN]; 	//接收缓冲,最大USART3_REC_LEN个字节.末字节为换行符 
extern u8  USART3_TX_BUF[USART3_SED_LEN]; 	//发送缓冲,最大USART3_SED_LEN个字节.末字节为换行符
extern u16 USART3_RX_STA;         			//接收状态标记	
void uart3_init(u32 bound);
void u3_printf(char* fmt,...);
#endif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/21797.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Deno入门:Node.js的现代替代品

Deno 作为 Node.js 的现代替代品&#xff0c;提供了许多改进和创新&#xff0c;尤其是在安全性、模块系统和开发体验方面。虽然它仍处于发展阶段&#xff0c;但对于寻求简洁、安全和现代化 JavaScript/TypeScript 开发环境的开发者来说&#xff0c;Deno 是一个值得考虑的选择。…

【封装】Unity切换场景不销毁物体

在切换场景时&#xff0c;如果物体不需要销毁&#xff0c;可以直接使用下方脚本 代码 public class DontDestroyLoader : MonoBehaviour{ //所有不销毁的物体预制体[SerializeField] private GameObject[] dontDestroyPrefabs;//实例化预制体public void Load(){foreach (var …

Linux CFS调度器简介

文章目录 前言一、概要二、实现2.1 简介2.2 算法实现2.3 内核源码 三、特点四、调度策略五、调度类参考资料 前言 早期的Linux调度器采用了简化的设计&#xff0c;显然并不针对具有许多处理器甚至超线程的大规模架构。Linux 1.2调度器使用循环队列对可运行任务进行管理&#x…

flink实战--大状态任务调优指南

Flink 状态(State)简介 在 Flink 中,状态管理是流处理应用的核心概念之一,它允许算子(operators)在处理事件时保持和操作状态信息。在 Flink 中,状态可以被视为算子的“记忆”,它使得算子能够在处理无界流数据时保持对历史数据的跟踪。状态可以是简单的键值对,也可以是…

昆仑万维官宣开源2000亿稀疏大模型Skywork-MoE

6月3日&#xff0c;昆仑万维宣布开源2千亿稀疏大模型Skywork-MoE&#xff0c;性能强劲&#xff0c;同时推理成本更低。 据「TMT星球」了解&#xff0c;Skywork-MoE基于之前昆仑万维开源的Skywork-13B模型中间checkpoint扩展而来&#xff0c;是首个完整将MoE Upcycling技术应用…

北京Profinet转Modbus网关配置调试详解

一、背景&#xff1a;在工业自动化系统中&#xff0c;PLC&#xff08;可编程逻辑控制器&#xff09;与流量计之间的通信是非常重要的&#xff0c;以确保数据准确传输并实现控制功能。然而&#xff0c;由于PLC和流量计可能采用不同的通信协议&#xff08;如Profinet和Modbus&…

探索Java的DNA-JVM字节码深度解析

引言 在Java的世界里&#xff0c;JVM&#xff08;Java虚拟机&#xff09;是我们程序运行的心脏。而字节码&#xff0c;作为JVM的血液&#xff0c;携带着程序的执行指令。今天&#xff0c;我们将深入探索Java字节码的奥秘&#xff0c;一窥JVM如何将人类可读的代码转化为机器可执…

洛谷 P1438 无聊的数列

题意 给定一个序列 A ( A 1 , A 2 , ⋯ , A n ) A(A_1,A_2,\cdots,A_n) A(A1​,A2​,⋯,An​)。 现在进行 m m m次操作&#xff0c;分为以下两种: 1 l r k d&#xff1a;给定一个长度为 r − l 1 r-l1 r−l1的等差序列&#xff0c;首项为 k k k&#xff0c;公差为 d d d&am…

【小白向】微信小程序解密反编译教程

# 前言 最近笔者有做到微信小程序的渗透测试&#xff0c;其中有一个环节就是对微信小程序的反编译进行源码分析&#xff0c;所谓微信小程序反编译&#xff0c;就是将访问的小程序进行反向编译拿到部分源码&#xff0c;然后对源码进行安全审计&#xff0c;分析出其中可能存在的…

图形学初识--颜色混合

文章目录 前言正文为什么要有颜色混合&#xff1f;颜色混合常见实现方式&#xff1f;上述颜色混合注意点 结尾&#xff1a;喜欢的小伙伴点点关注赞哦! 前言 本章节补充一下颜色混合的内容&#xff0c;主要包含&#xff1a;为什么要有颜色混合&#xff1f;颜色混合常实现方式&a…

BGP——边界网关路由协议

BGP -边界网关路由协议 OSPF RIP EIGRP AS——自治系统 标准编号16位二进制 0-65535 1-64511公有 64512 -私有 扩展编号 32位二进制 动态路由协议: GP ——内部网关路由协议 —— AS之内 或企业网、局域网 RIP OSPF EIGRP EGP-外部网关路由协议 - …

Centos 7 安装刻录至硬件服务器

前言 在日常测试中&#xff0c;会遇到很多安装的场景&#xff0c;今天给大家讲一下centos 7 的安装&#xff0c;希望对大家有所帮助。 一.下载镜像 地址如下&#xff1a; centos官方镜像下载地址https://www.centos.org/download/ 按照需求依次点击下载 二.镜像刻录 镜像刻…

idea springboot woff/woff2/eot/ttf/svg等小图标不显示的问题 - 第515篇

历史文章&#xff08;文章累计500&#xff09; 《国内最全的Spring Boot系列之一》 《国内最全的Spring Boot系列之二》 《国内最全的Spring Boot系列之三》 《国内最全的Spring Boot系列之四》 《国内最全的Spring Boot系列之五》 《国内最全的Spring Boot系列之六》 《…

Shopify 独立站监控观测最佳实践

Shopify 简介 Shopify 是一个全球领先的电子商务平台&#xff0c;它为商家提供了一整套在线商店解决方案。自 2006 年成立以来&#xff0c;Shopify 已经帮助数百万商家在全球范围内建立和发展他们的在线业务。 监控观测 Shopify 站点对于确保业务连续性、优化用户体验和提高运…

python虚拟环境venv的安装--ubuntu

venv是Python内置的虚拟环境管理工具 1.安装python3-venv包&#xff1a; sudo apt install python3.12-venv2.创建虚拟环境&#xff08;在项目目录下&#xff09; python3 -m venv venv3. 激活虚拟环境&#xff1a; source venv/bin/activate4.在虚拟环境中安装所需的库&am…

Linux shell编程学习笔记56:date命令——显示或设置系统时间与日期

0 前言 2024年的网络安全检查又开始了&#xff0c;对于使用基于Linux的国产电脑&#xff0c;我们可以编写一个脚本来收集系统的有关信息。在收集的信息中&#xff0c;应该有一条是搜索信息的时间。 1. date命令 的功能、格式和选项说明 我们可以使用命令 date --help 来查看 d…

python 虚拟环境安装及python包库安装

python 虚拟环境安装及python包库安装 安装虚拟环境的方式注意事项 安装虚拟环境的方式 切记尽量不要混用 pip 安装 对于pip安装&#xff0c;使用命令如下 下载virtualenv 工具 pip install virtualenv 创建虚拟环境并激活环境virtualenv venv source ./venv/bin/activate co…

Kafka之Broker原理

1. 日志数据的存储 1.1 Partition 1. 为了实现横向扩展&#xff0c;把不同的数据存放在不同的 Broker 上&#xff0c;同时降低单台服务器的访问压力&#xff0c;我们把一个Topic 中的数据分隔成多个 Partition 2. 每个 Partition 中的消息是有序的&#xff0c;顺序写入&#x…

LeetCode刷题:反转链表

leetCode真题 206. 反转链表 属于基础简单题目 常见的做法有递归和while循环 递归 // 1. 递归参数和返回值public static ListNode reverseList(ListNode head) {// 1. 递归终止条件if (head null || head.next null) {return head;}// 递归逻辑ListNode last reverseL…

达梦数据库相关SQL及适配Mysql配置总结

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…