Stable Diffusion Webui--安装与使用

最近进行的课程汇报,学习了2023年的CVPR文章《DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation》,因此尝试使用了几种方法对这篇文章的工作进行了一定的复现。本文主要介绍Stable Diffusion Web UI(webui)的安装以及使用webui运行DreamBooth生成图片。


参考教程

一开始看的文字教程主要是有关DreamBooth的,没有看明白这个Stable Diffusion Web UI是怎么安装与使用的,于是我又在B站找了个视频教程,效果还不错,下面给出我观看的视频教程链接和作者id,避免侵权~~~

视频教程链接:stable diffusion 使用dream booth训练大模型入门教程_哔哩哔哩_bilibili

b站视频作者id:穆飞大神

接下来我将结合我在安装过程中遇到的一些问题,以图文形式对Stable Diffusion Web UI的安装过程进行讲解。

安装过程

step1 克隆webui的github仓库

webui的github仓库链接:AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI (github.com)icon-default.png?t=N7T8https://github.com/AUTOMATIC1111/stable-diffusion-webui通过命令将仓库克隆至本地:

(在git bash中和在win cmd中运行效果似乎是一样的)

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

(此时需要注意,存放路径中不能带有中文,否则后续运行会报错)

后面的run bat文件可以直接在资源管理器下双击运行。

运行后提示could not launch python。

step2 安装python 3.10.6

Stable Diffusion Web UI本地运行需要安装python 3.10.6,目前看下来似乎必须是这个版本。

安装python时需要勾选,添加到环境变量add python to path,否则系统无法找到,在cmd中输入python会跳转microsoft store(至少在win11下会这样,但是以前确实从来没有遇到过这种情况,可能是以前安装的时候都装对了)。

安装完之后在命令行中输入python之后的结果如下图所示。

step3 运行webui

双击运行webui.bat文件,第一次运行会自动安装一些包,运行情况如下图所示。

在安装完包之后又遇到报错:

通过排查,这里的报错原因就是第一步路径中带有中文,重新在没有中文的路径下双击运行webui.bat文件,结果如下图所示。

安装相关的包完成后,命令行出现上述结果,浏览器直接跳出stable diffusion界面。

我这里的webui也没有再另外进行汉化,所以界面都是英文的。

step4* 安装DreamBooth插件

*如果不用训练可以不做这一步。

插件的位置,在webui-Extension-Available-点击Load from,在下面出现的众多插件中找到DreamBooth(可以通过Ctrl+F直接在页面中进行查找),点击安装。

(安装过后,在这里就不会再出现了)

最终安装好之后的效果如下图所示。

(由于我这里的界面和我所看的视频教程中不太一样,所以我没有使用这里的extension-dreambooth进行训练)

至此,安装过程就基本结束了。

上手使用

直接安装的webui似乎是没有模型的,在安装了上面所说的DreamBooth插件之后,会自动下载一个v1.5-pruned.ckpt的模型,此时加载该模型,进行文生图的测试。以ed sheeran为提示词,设置Sampling steps为150,点击generate进行生成,生成的图片结果如下图所示。

根据教程,我又在C站下载了作者发布的无聊猿模型,模型链接如下:

Apes - apes_v1.0 | Stable Diffusion Checkpoint | Civitai

将下载好的模型文件放到webui存储模型文件的路径下,具体位置如下图所示。

添加完模型文件后需要刷新webui(重新进入),然后在webui中加载这个模型,此时模型的下拉菜单中已经可以看到刚刚添加的模型文件。

以下是我的一些生成结果。

思考

目前的文生图技术感觉只是先把这项技术做出来,暂时还想象不到有什么具体的应用。比如平面设计,或是科研绘图,这些都需要很多细节、色彩的微调,而直接生成的图片是位图不是矢量图,无法满足这样的需求。文生图感觉还是用来预览想象力的一种手段,很多天马行空的想法但是可能实现、绘制一个像样的demo需要较长的时间,此时把想法描述给AI,来进行绘制与实现可以提高效率,为后期的制作提供一个具体的方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/21031.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【因果推断python】10_分组和虚拟变量回归1

目录 分组数据回归 分组数据回归 并非所有数据点都是一样的。 如果我们再次查看我们的 ENEM 数据集,相比小规模学校的分数,我们更相信规模较大的学校的分数。 这并不是说大型学校更好或什么, 而只是因为它们的较大规模意味着更小的方差。 i…

bootstrap5-学习笔记1-容器+布局+按钮+工具

参考: Bootstrap5 教程 | 菜鸟教程 https://www.runoob.com/bootstrap5/bootstrap5-tutorial.html Spacing Bootstrap v5 中文文档 v5.3 | Bootstrap 中文网 https://v5.bootcss.com/docs/utilities/spacing/ 之前用bootstrap2和3比较多,最近用到了5&a…

SRE视角下的DevOps构建之道

引言: 随着数字化时代的飞速发展,软件成为了企业竞争力的核心。为了更高效地交付高质量的软件,DevOps(Development和Operations的组合)作为一种文化、实践和工具集的集合,逐渐成为了行业内的热门话题。然而…

渲染100为什么是高性价比网渲平台?渲染100邀请码1a12

市面上主流的网渲平台有很多,如渲染100、瑞云、炫云、渲云等,这些平台各有特色和优势,也都声称自己性价比高,以渲染100为例,我们来介绍下它的优势有哪些。 1、渲染100对新用户很友好,注册填邀请码1a12有3…

【CTF MISC】XCTF GFSJ0008 low Writeup(LSB隐写+QR Code识别)

low 暂无 解法 用 StegSolve 打开,Green plane 1 中疑似隐藏有二维码。 使用大佬写的代码: from PIL import Imageimg Image.open("./low.bmp") img_tmp img.copy() pix img_tmp.load() width, height img_tmp.size for w in range(wid…

每日一题——Python实现PAT甲级1046 Shortest Distance(举一反三+思想解读+逐步优化)

一个认为一切根源都是“自己不够强”的INTJ 个人主页:用哲学编程-CSDN博客专栏:每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法 专业点评 优点 改进建议 时间复杂度分析 空间复杂度分析 总结 我要更…

HCIP-Datacom-ARST自选题库__MAC【14道题】

一、单选题 1.缺省情况下,以下哪种安全MAC地址类型在设备重启后表项会丢失? 黑洞MAC地址 Sticky MAC地址 安全动态MAC地址 安全静态MAC地址 2.华为交换机MAC地址表中的动态sticky MAC地址的默认老化时间是多少秒? 300 不会老化 400 500 3.华为交换机MA…

Polar Web【简单】login

Polar Web【简单】login 本文旨在记录此题的探索和解决过程。 Contents Polar Web【简单】login探索&思路EXP (python)结果&总结 探索&思路 查看源码,发现存在用户信息泄露。尝试用获取信息登录,显示成功,但其后没有可做的操作。…

有损线、上升边退化与材料特性(七)

有损线的不良影响 当信号沿着实际有损线传输时,高频分量的幅度减小,而低频分量的幅度保持不变。由于这个种选择性的衰减,信号的带宽降低,信号的上升边会增长。如果上升边的退化与单位间隔比很小,同位模式将比较稳定与…

Django视图与路由:打造你的网络帝国

Hello,我是阿佑,上期给大家讲了 Django ORM魔法:用Python代码召唤数据库之灵! 今天将带大家深入探讨了视图的工作原理、如何编写高效的函数视图和类视图,以及如何巧妙地利用URL路由来提升应用的用户体验和可维护性。通…

最新h5st(4.7.2)参数分析与纯算法还原(含算法源码)

文章目录 1. 写在前面2. 加密分析3. 算法还原 【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python…

图解 Python 编程(10) | 错误与异常处理

🌞欢迎来到Python的世界 🌈博客主页:卿云阁 💌欢迎关注🎉点赞👍收藏⭐️留言📝 🌟本文由卿云阁原创! 📆首发时间:🌹2024年6月2日&…

数据结构(C):从初识堆到堆排序的实现

目录 🌞0.前言 🚈 1.堆的概念 🚈 2.堆的实现 🚝2.1堆向下调整算法 🚝2.2堆的创建(堆向下调整算法) ✈️2.2.1 向下调整建堆时间复杂度 🚝2.3堆向上调整算法 🚝2.…

c++------类和对象(下)包含了this指针、构造函数、析构函数、拷贝构造等

文章目录 前言一、this指针1.1、this指针的引出1.2、 this指针的特性 二、类的默认的六个构造函数2.1、构造函数简述2.2构造函数 三、析构函数3.1、析构函数引出3.2、特点: 四、拷贝构造4.1、引入4.2、特征:4.3、默认拷贝构造函数 总结 前言 在本节中&a…

Compose Multiplatform 1.6.10 发布,解释一些小问题, Jake 大佬的 Hack

虽然一直比较关注跨平台开发,但其实我很少写 Compose Multiplatform 的内容,因为关于 Compose Multiplatform 的使用,其实我并没在实际生产环境上发布过,但是这个版本确实值得一提,因为该版本包含: iOS Bet…

数据库(15)——DQL分页查询

DQL分页查询语法 SELECT 字段列表 FROM 表名 LIMIT 起始索引,查询记录数; 注:起始索引从0开始,起始索引(查询页码-1)*每页显示记录数。 如果查询的是第一页,可以省略起始索引。 示例:查询第一页…

【考研数学】概率论如何复习?跟谁好?

概率论一定要跟对老师,如果跟对老师,考研基本上能拿满分 概率论在考研试卷中占比并不大,其中: 高等数学,90分,约占比60%; 线性代数,30分,约占比20%; 概率论与数理统计&#xff0…

每日5题Day15 - LeetCode 71 - 75

每一步向前都是向自己的梦想更近一步&#xff0c;坚持不懈&#xff0c;勇往直前&#xff01; 第一题&#xff1a;71. 简化路径 - 力扣&#xff08;LeetCode&#xff09; class Solution {public String simplifyPath(String path) {Deque<String> stack new LinkedList…

mysql的增删查改(进阶)

目录 一. 更复杂的新增 二. 查询 2.1 聚合查询 COUNT SUM AVG MAX MIN 2.1.2 分组查询 group by 子句 2.1.3 HAVING 2.2 联合查询/多表查询 2.2.1 内连接 2.2.2 外连接 2.2.3 全外连接 2.2.4 自连接 2.2.5 子查询 2.2.6 合并查询 一. 更复杂的新增 将从表名查询到…

自动化办公01 smtplib 邮件⾃动发送

目录 一、准备需要发送邮件的邮箱账号 二、发送邮箱的基本步骤 1. 登录邮箱 2. 准备数据 3. 发送邮件 三、特殊内容的发送 1. 发送附件 2. 发送图片 3. 发送超文本内容 4.邮件模板内容 SMTP&#xff08;Simple Mail Transfer Protocol&#xff09;即简单邮件传输协议…