数模混合芯片设计中的修调技术是什么?

一、修调目的

数模混合芯片需要修调技术主要是因为以下几个原因:

工艺偏差(Process Variations):

半导体制造过程中存在不可避免的工艺偏差,如晶体管尺寸、阈值电压、电阻和电容值等,这些参数的实际值与设计值可能存在差异,影响芯片的性能和一致性。

温度漂移(Temperature Drift):

随着工作温度的变化,芯片内部的模拟电路特性会发生漂移,如增益、失调、噪声等,需要修调技术来补偿温度变化对性能的影响,确保芯片在宽温范围内仍能保持稳定性能。

电源电压波动(Supply Voltage Variation):

实际电源电压可能与设计时的理想值有所不同,这会影响模拟电路的性能,修调技术可以对电源电压变化进行补偿,维持电路性能稳定。

提高精度和性能:

高精度的模拟电路(如ADC、DAC、PLL等)对失调、增益、线性度等参数要求很高,通过修调技术可以进一步提高这些参数的精度,达到设计目标。

提高良品率和一致性:

制造过程中的不确定性会导致芯片性能的个体差异,修调技术可以对每颗芯片进行个性化的校准,从而提高整批产品的良品率和性能一致性。

因此,通过各种修调技术,数模混合芯片能够在不同的工作条件和工艺变化下,仍然能够满足设计时的性能指标,提高产品的竞争力和可靠性。

数模混合芯片的修调技术并不一定需要客户自行修调。实际上,大多数情况下,芯片在出厂前就已经完成了制造商的修调过程,确保芯片达到规定的性能指标。这些修调过程可能包括在生产线上进行的硬件修调(如熔丝修调、激光修调等)或者在出厂前进行的软件修调(如数字校准)。

在芯片到达终端用户手中时,一般不需要再次进行修调。然而,有些高端或复杂的数模混合芯片可能提供用户可编程的修调选项,允许用户根据特定应用环境进行微调优化,但这通常需要一定的专业知识和专用工具,并非普通消费者操作的常规步骤。

此外,一些数模混合芯片集成了自适应校准功能,可以在系统运行时根据工作条件自动调整,这类芯片无需用户手动修调,而是由芯片内部机制自动完成。

此图片来源于网络

 

二、修调技术

数模混合芯片设计中的修调技术主要服务于校正由于工艺、温度和电源电压变化带来的性能偏差,以确保芯片在不同工作条件下的性能稳定性。以下是数模混合芯片设计中常见的修调技术:

数字校准(Digital Calibration)

数字校准通过软件算法在系统启动或运行过程中动态调整模拟模块的行为。例如,在高精度ADC(模数转换器)中,可以通过数字控制器读取并分析转换误差,然后更新DAC(数模转换器)的设置值来补偿失调、增益误差和其他非理想特性。

硬件寄存器修调(Trimming with Register Settings)

设计者会在芯片内部包含一些可编程的硬件寄存器,通过数字接口写入不同的数值来调节模拟模块的工作点或参数。比如,通过配置寄存器来微调参考电压、电流源的值或者滤波器的频率响应。

熔丝修调(Fuse Programming or Laser Trimming)

在生产流程后期,通过熔断或激光切割预先设计好的熔丝,改变电路的电阻或电容值,从而修正模拟部分的性能。例如,可以根据实际测试数据烧断特定的熔丝,调整放大器的偏置电流或匹配电阻。

自适应校准(Adaptive Calibration)

这种技术允许芯片在运行时自动监测环境变化(如温度变化),并实时调整模拟电路的参数,保证性能的稳定性。例如,某些温度传感器和补偿电路配合使用,以保持ADC的线性度和精确度不受温度影响。

多路开关和电阻阵列(Multiplexer and Resistor Array)

使用多路开关和电阻网络实现模拟信号路径的修调。通过数字控制信号选择不同的电阻值,可以微调电压基准、增益或失调补偿。

迭代学习法(Iterative Learning Algorithm)

对于复杂的模拟模块,可能采用基于反馈的迭代学习算法进行校准,通过反复尝试和错误修正,找到最佳的参数组合以达到设计目标。

片上自校准(On-Chip Self-Calibration, OSCAL)

片上集成校准电路,可在芯片启动或定期维护时进行自校准,减少了对外部设备的依赖,提高了产品的一致性和良率。

多阶校准(Multistage Calibration)

对于大型数模混合系统,可能会采用多级校准方案,先进行粗略的全局修调,再进行精细局部修调,以逐步逼近最优性能。

以上修调技术并非孤立使用,而是常常结合在一起,形成一套完整的校准解决方案,以满足数模混合芯片在不同应用场景下对于精度和鲁棒性的严格要求。

三、优缺点 ?

在数模混合芯片设计中,不同的修调技术各有优缺点,尤其是在考虑芯片面积和功耗这两个关键设计因素时,优缺点表现如下:

数字校准(Digital Calibration)

优点:灵活性高:通过软件更新即可实现参数调整,无需额外的硬件修改。动态适应性强:可根据工作条件实时调整,增强芯片在不同环境下的性能稳定性。

缺点:额外数字逻辑可能会增加芯片面积和功耗,特别是如果需要复杂的校准算法。依赖于数字控制器和存储单元,可能会占用一部分宝贵的芯片资源。

硬件寄存器修调

优点:结构相对简单,只需要较小的硬件资源就可以实现一定程度的修调。修调速度快,一旦写入寄存器即可立即生效。

缺点:修调精度可能受限于寄存器的数量和分辨率,无法实现极高精度的修调。若寄存器过多,也可能导致芯片面积增大。

熔丝修调

优点:提供较高精度的修调,特别是在大批量生产中,可一次性永久校准。

缺点:工艺复杂,增加了生产成本和时间。不可逆,一旦修调后不可更改,不支持动态校准。有可能增加芯片面积,特别是对于大规模的修调矩阵。

自适应校准

优点:能够随时间和环境变化实时调整,提高系统长期稳定性。

缺点:自适应电路可能增加芯片面积和持续的功耗,尤其在始终处于激活状态的情况下。

片上自校准(OSCAL)

优点:独立于外部设备,提高了产品的便携性和可靠性。

缺点:为了实现自校准功能,需要额外的校准电路和控制逻辑,可能增加面积和功耗。

总的来说,选择哪种修调技术取决于具体的应用需求和设计约束,包括成本、功耗、面积、精度和灵活性等方面。设计者通常需要权衡各种技术的优缺点,设计出既满足性能要求又兼顾面积和功耗的最优修调方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/20888.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习Day5】操作系统

✍🏻记录学习过程中的输出,坚持每天学习一点点~ ❤️希望能给大家提供帮助~欢迎点赞👍🏻收藏⭐评论✍🏻指点🙏 学习编辑文章的时间不太够用,先放思维导图,后续复习完善细节。

基于jeecgboot-vue3的Flowable流程-我的任务(三)

因为这个项目license问题无法开源,更多技术支持与服务请加入我的知识星球。 这一部分主要讲我的任务里的详情,看流程情况 1、主要调用record/index.vue,调用参数如下: /*** 详情*/function handleDetail(record: Recordable) {c…

构建一个文字冒险游戏:Python 编程实战

在本文中,我们将探索如何使用 Python 创建一个简单的文字冒险游戏。通过这个项目,你将了解到基础的编程技术,包括条件语句、函数和基本的用户输入处理,同时也能体会到文本游戏的魅力和设计的挑战。 项目概述 文字冒险游戏是一种…

python-最接近target的值

【问题描述】:给定一个数组,在数组中找到两个数,使它们的和最接近目标值的值但不超过目标值,然后返回它们的和。 【问题示例】:输入target15,array[1,3,5,11,7],输出14,31114。 完整代码如下: …

童梦奇缘,味你而来 —— 蒙自源六一儿童节特别活动

在六月的暖阳下,孩子们的欢笑声如同最美妙的乐章,奏响了夏日的序曲。在这个充满童真与梦想的季节,蒙自源精心策划了一场别开生面的六一儿童节特别活动,邀请每一位小朋友和大朋友,一同踏上一段奇妙的味蕾之旅。 从5月25…

【深入学习Redis丨第二篇】Redis集群部署详解

文章目录 Redis集群部署Redis4 Cluster部署 Redis集群部署 1 Redis各节点部署 使用源码安装各节点,不过与非cluster方式不同的是,配置文件中需启动cluster相关的配置。 因本次为伪分布式部署,生产环境部署时建议至少3台机器部署&#xff0…

列表和列表项

一、列表和列表项简介 列表是 FreeRTOS 中的一个数据结构,列表被用来跟踪 FreeRTOS中的任务(任务当前的状态),列表项就是存放在列表中的项目 列表相当于链表,列表项相当于节点,FreeRTOS 中的列表是一个双向…

Gigapixel AI 安装和使用教程

简介 Topaz Gigapixel AI 是一款功能强大的图像放大软件,它可以帮助用户将低分辨率的图像放大到更高的分辨率,而不会损失细节。该软件利用人工智能技术,能够智能分析图像并重建丢失的细节,从而生成高质量的放大图像。 安装 下载…

系统架构设计师 - 操作系统(1)

操作系统 操作系统(5-6分)操作系统概述进程管理进程和线程的基本概念进程的状态 ★前趋图 ★★★★信号量与 PV 操作 ★★★★死锁及银行家算法 ★ 大家好呀!我是小笙,本章我主要分享系统架构设计师 - 操作系统(1)知识&#xff0c…

2024.6.1 学习记录

1、面经复习 2、项目使用guthub action 完成CI/CD,使用rollup打包为es格式 3、代码随想录刷题复习

Go语言-切片底层探索 —— 补充篇:切片和底层数组到底是什么关系?

之前的切片探索中,上篇通过一道算法题目,了解到切片的两大特性:一是:切片是引用类型,指向底层数组,修改其底层数组的时候,会影响切片中的值。二是:向切片中添加元素的时候&#xff0…

半导体光子电学期末笔记1: 电磁光学基本理论

Chapter 2: 电磁光学基本理论 电磁光学理论概述 真空中麦克斯韦方程组[p9] 在自由空间中,麦克斯韦方程组可以写成如下形式: { ∇ H ϵ 0 ∂ E ∂ t (1) ∇ E − μ 0 ∂ H ∂ t (2) ∇ ⋅ E 0 (3) ∇ ⋅ H 0 (4) \begin{cases} \nabla \times \…

Java——异常详解

异常五个主要关键字:throw、try、catch、finally、throws 1. 异常的概念与体系结构 1.1 异常的概念 在Java中,程序执行过程中发生的不正常行为被称为异常,如: 1. 算数异常 public static void main(String[] args) {System.ou…

基于MingGW64 GCC编译Windows平台上的 libuvc

安装cmake 打开cmake官网 https://cmake.org/download/,下载安装包: 安装时选择将cmake加到系统环境变量里。安装完成后在新的CMD命令窗口执行cmake --version可看到输出: D:\>cmake --version cmake version 3.29.3 CMake suite mainta…

牛客网刷题 | BC108 反斜线形图案

目前主要分为三个专栏,后续还会添加: 专栏如下: C语言刷题解析 C语言系列文章 我的成长经历 感谢阅读! 初来乍到,如有错误请指出,感谢! 描述 KiKi学习了循环&am…

社交媒体数据恢复:Voxer

一、Voxer数据恢复教程 了解Voxer应用 Voxer是一款专门为iPhone和Android智能手机设计的免费对讲机应用,为用户提供即时的语音、文本、照片等信息发送和接收服务。该应用有点类似短信服务,但用声音代替文本。当你下载之后,如果不邀请朋友&a…

重复文件怎么查找并清理?电脑重复文件清理工具分享:4个

在日常使用电脑的过程中,我们不可避免地会遇到各种重复文件的问题。这些重复文件不仅占据了宝贵的存储空间,还可能导致系统性能下降,甚至引发一些不必要的问题。因此,如何有效地查找并清理这些重复文件成为了许多用户关注的焦点。…

计算 x 的二进制表示中 1 的个数

计算 x 的二进制表示中 1 的个数 代码如下: int func(int x){int countx 0;while (x>0){countx;x x & (x - 1);}return countx;} 完整代码: using System; using System.Collections.Generic; using System.ComponentModel; using System.Dat…

STM32基于HAL库的HC-SR04模块超声波测距

文章目录 一、HC-SR04模块介绍二、创建工程1.选择芯片2.配置RCC、SY![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/9d2a5b883f0e409eabb804e6da861277.png)3.配置串口14.配置定时器5.配置GPIO 三、Keil代码1.勾选Use MicroLIB2.创建SR04.c和SR04.h文件3.其他代码 …

html three.js 引入.stl模型示例

1.新建一个模块用于放置模型 <div id"chart_map" style"width:800px;height:500px"></div> 2. 引入代码根据需求更改 <!-- 在head或body标签内加入以下链接 --> <script src"https://cdn.jsdelivr.net/npm/three0.137/build/t…